410 likes | 429 Views
Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 Lectures on High Energy Neutrino Astronomy astro-ph/0506248 Latest Results astro-ph/0509330. Flux Estimates of Cosmic Neutrinos. Particle physics:
E N D
Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube • astro-ph/0602132 • Lectures on High Energy • Neutrino Astronomy • astro-ph/0506248 • Latest Results • astro-ph/0509330
Particle physics: cold dark matter search Astrophysics: gamma ray bursts & starbursts Generic fluxes associated with cosmic rays Examples of Science
Nature’s Particle Accelerators • Electromagnetic Processes: • Synchrotron Emission • Eg ~ (Ee/mec2)2 B • Inverse Compton Scattering • Ef ~ (Ee/mec2)2 Ei • Bremsstrahlung • Eg ~ 0.5 Ee • Hadronic Cascades • p + gp± +po +… e ± + n + g +… • p + p p± +po +… e ± + n + g +…
Typical Multiwavelength Spectrum from Non-Thermal High Energy g-ray Source [ Energy Emitted ] synchrotron Inverse Compton [ Photon Energy ]
Spinning Neutron Star Fills Nebula with Energetic Electrons • Synchrotron Radiation and Inverse Compton Scattering
Active Galactic Nuclei Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities Synchrotron Emission and Inverse Compton
no evidence for protons but … cosmic rays exist
Electron --- Magnetic Field -ray Fireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino Connection Progenitor (Massive star) 6 Hours 3 Days -ray e- p+ Optical X-ray (2-10 keV) Radio E 1051 – 1054 ergs R < 108 cm R 1014 cm, T 3 x 103 seconds R 1018 cm, T 3 x 1016 seconds
collapse of massive star produces a gamma ray burst spinning black hole highest energy particles
neutrinos from GRB • fireball: expanding collimated shocked jet of photons, • electrons and positrons becomes optically thin • produces neutrinos in internal collisions when slower • material is overtaken by faster in the fireball protons and photons coexist in the fireball
NUMEROLOGY • Lg = 1052 erg/s • R0 = 100 km (dt = 10 msec) • Eg = 1 MeV • = 300 • dEg/dt = dECR/dt = 4x1044 erg Mpc-3yr-1 • tH = 1010 years • Pdet = 10-6 En0.8 (in TeV) • spg = 10-28 cm2 for p+gn+p • < xp p> = 0.2
GRB1 fireball fireball frame at t=0 observer frame DR R' R v c g ~ 102 - 103 E = g E' t = g-1 t' d 1 MeV 10 msec DR = c Dt = R0 with R0 = R' (t = 0)
grb 2 : kinematics R q v q c
GRB1 fireball fireball frame at t=0 observer frame DR R' R v c g ~ 102 - 103 E = g E' t = g-1 t' d 1 MeV 10 msec DR = c Dt = R0 with R0 = R' (t = 0)
Photon Density in the Fireball GRB2 LgDt/g ______ 4pR'2DR' U'g ___ E'g ng = = E'g ___ g R' = g2cDt DR' = gcDt note: for g = 1 (no fireball) the optical depth of photons is topt = = R0ngsTh ~ 1015 R0 __ lTh
GRB3 pion (neutrino) production when protons and photons coexist neutrinos pgD np+ gamma rays np0 Ep > 1.4 x 104 TeV m2D - m2p _________ 4E'g E'p > ~ _ ~ _ En = 1/4 < xp p> Ep 1/20 Ep 700 TeV
fraction of GRB energy converted into pion (neutrino) production e g (Lg) GRB synchro + IC n p pions (LCR) GRB4
GRB 5 Neutrino flux from GRB fireballs U ___ E 1 ___ E fn = = (1/2 f tH) c __ 4p c __ 4p dE __ dt ~ _ charged pions only LCR Lg Nevents = Psurvived Pdetectedfn 20 km -2 yr -1 ~ _
distribution of the sources critical ! Adding Fluctuations to the average: • dN/dE: Source spectrum • f(z): redshift distribution function, with the integral normalized to One • E(source) = (1+z) E(here)
fluctuations dominate ! 50 45 (a) 40 35 30 25 Number of GRBs 20 15 10 5 0 -5 -4 -2 -1 0 1 -3 10 10 10 10 10 10 10 -2 Events [km ]
Correlations to GRB background cuts can be loosened considerably high signal efficiency 88 BATSE bursts in 1997 effective area ~ 0.05 km2
starbursts l ~ 100 pc v ~ 100 km/s t ~ 106 years ~ 0.2 g cm-2 B ~ 0.1 mGauss supernovae cosmic rays + dense gas pions merging galaxies
neutrino radio connection cosmic rays + dense gas pions electrons radio neutrinos
~ 500 events per km2 year IceCube
relic density decoupling occurs when Gann < H
The LightestSupersymmetric Particle (LSP) Usually the neutralino. If R-parity is conserved, it is stable. The Neutralino – c Gaugino fraction 1. Select MSSM parameters 2. Calculate masses, etc 3. Check accelerator constraints 4. Calculate relic density 5. 0.05 < Wch2 < 0.5 ? 6. Calculate fluxes, rates,... Calculation done with the MSSM http://www.physto.se/~edsjo/darksusy/
WIMP + nucleus WIMP + nucleus • Measure the nuclear recoil energy • Suppress backgrounds • Search for an annual modulation due to the Earth’s motion around the Sun direct detection - general principles c c c c c December June
Most likely DAMA point. Excluded at 99.8% CL EdelweissJune 2002
c WIMP Capture and Annihilation n nm DETECTOR c + c W + W n + n
indirect detection for cyclists e.g.104 m2n-telescope searches for 500 GeV WIMP 300 km/s > LHC limit 1. - flux 2. solar cross section
Nsun = capture rate = annihilation rate _ c c WW 250 GeV 500 GeV mnm 3. Capture rate by the sun 4. Number of muon-neutrinos 0.1is the leptonic branching ratio
5.5 x 1023 cm-3 104 m2 ~ _ # events = 10 per year
AMANDA 1y SK Antares 3 years 1km3 (IceCube) PRELIMINARY WIMP search Limits on muon flux from Earth Limits on muon flux from Sun Disfavored by direct search (CDMS II)
IceCube vs Direct Detection (Zeppelin4/Genius) Black: out Green: yes Blue: no
Inner Core Detector Inner Core (same region as AMANDA) 7 IceCube + 18 AMANDA strings 225 DOMs + 540 OMs