360 likes | 375 Views
Explore the concept of compensated pathogenic deviations in evolution, genetic stability, and the impact of mutations across species using scientific data and analysis.
E N D
Stability and Compensated Pathogenic Deviations Fyodor A. Kondrashov Section of Ecology, Animal Behavior and Evolution University of California at San Diego
giraffe elephant TACG ATGC ATCG Common ancestor
giraffe ATGC ATGG ATCC TTGC AAGC AAGG ATCG TTGG TAGC TTCC AACC TTCG TAGG TACC AACG Common ancestor elephant TACG
Ideal World Breeding Real World Breeding x x
Fitness Genotype Genotype
MITOMAPA human mitochondrial genome database A compendium of polymorphisms and mutations of the human mitochondrial DNA Are human pathogenic mutations also pathogenic to closely related species?
Methods. Genbank 22 tRNA multiple alignments with 106 mammals and with marked CPDs ENTREZ Phylogeny information Complete mammalian mitochondrial genomes FEDYA, ANDY, TEXTPAD, mfold EYES and PERL Pathogenic mutations Synteny preserved in most mammals (except marsupials) CLUSTAWL Multiple alignment Secondary structure info
A multiple alignment of primate orthologs for Glycine (G) tRNA. human actcttttagtataaat--agtaccgttaacttccaattaactagttttgac-aacattcaaaaaagagta chimpanzee actcttttagtataaGt--agtaccgttaacttccaattaactagttttgac-aacattcaaaaaagagta pygmy chimpanzee actcttttagtataaGc--agtaccgttaacttccaattaactagttttgac-aacattcaaaaaagagta gorilla actcttttagtataatt--agtaccgttaacttccaattaaccagttttggt-agtacccaaaaaagagta orangutan actcttttagtataaGc--agtaccgttaacttccaattaaccagttttgac-aacactcaaaaaagagta Sumatran orangutan actcttttagtataaac--agtaccgttaacttccaattaactagttttgac-aacGcccaaaaaagagta hamadryas baboon actcttttagtataatt--agtacaAttgacttccaatcaatcagctttgac-aatattcaaaaaagagta Barbary ape actcttttagtataacc--agtacaAttgacttccaatcaatcagttttgac-aacattcaaaaaagagta common gibbon actcttttagtataaac--agtactgttaacttccaattaaccagcttcgat-aacGctcgaaaaagagta capuchin attctcttagtataaac--agtacaAttgacttccaattaataggccttgat-aa-acccaagagagaata ring-tailed lemur attcttttagtatcgacccaatacaAttgacttccaattaattaacttcggtgaa-aaccggaaaagaata slow loris gctcttttagtacaact--agtacaAttgacttccaatcaataggatttggtaaataaccaaaagagagca western tarsier gttcctttagtatcaatt-agtacaAttgacttccaatcaattagccctagtacaattctaggaaggaaca . * . * *
A multiple alignment of selected mammalian orthologs for Luicine UUR (L1). human gttaagatggcagagcccggtaatcgcataaaacttaaaactttacagt-cagaggttcaattcctcttcttaaca western tarsier gttaagatggcagagcccggCaattgcataaaacttaaaactttattat-cagaggttcaactcctcttcttaaca northern tree shrew gttaaggtggcagagcccggtcattgcctaaaacttaagattttaAgta-cagaagttcaaatcctctccttaaca European hare gttaaggtggcagagcccggCaattgcataaaacttaaaactttataat-cagaggttcaactcctctccttaaca Egyptian jerboa gctaagatggcagagcccggtaattgcaCaagacttaaaccCttgAatc-cagaggttcaactcctcttcttaGca Eurasian red squirrel attaagatggcagagcccggcaattgcataagatttaaaacCttactat-cagaggttcaactcctcttcttaaTa Madagascar hedgehog attaagatggcagagcc-ggtaattgcaCaagacttaaaccCttgctgt-cagaggttcaatCcctcttcttaaTa little red flying fox gttaggatggcagagcccggCaattgcataaaacttaagcttttataat-cagaggttcaactcctcttcctaaca Japanese house bat gttaaagtggcagagaccggtaattgcataaaacttaagattttagagc-cagaggttcaactcctctctttaaTa polar bear gttagggtggcagagcccggtGattgcataaaacttaaacctttatact-cagaggttcaaatcctctccctaaca Atlantic walrus gttagggtg-cagagcccggtaattgcataaaacttaaacttttacccc-cagaggttcaactcctctccctaaTa greater Indian rhino gttaggatggcagagcccggtaactgcataaaacttaaacctttataac-cagaggttcaactcctcttcctaaca narwhal gttgggatggcagagtacggCaattgcataaaacttaaacctttatacc-cagaggttcaaatcctcttcccaaca Indus River dolphin gttgaggtggcagagtccggCaattgTataaaacttaaacttttacact-cagaggttcaaatcctctccccaaca pig attagggtggcagagaccggtaattgcgtaaaacttaaacctttattac-cagaggttcaactcctctccctaaTa nine-banded armadillo gttaagatggcagagacaggtaattgcataagacttaaacctttattac-cagaggttcaaatcctcttcttaaca aardvark gttaaggtggcagagcccggtaattgcataaaacttaagcttttacaac-cagaggttcaattcctctccttaaca Asiatic elephant gttaagatagcaaaaattggtcactgcataaaacttaagcttttactca-cGgaggttcaactcctcttcttaaca African elephant gttaagatagcaaaaactggtcactgcataaaacttaagcttttactca-cGgaggttcaactcctcttcttaaca wallaroo attaaggtggcagagcc-ggCaattgcataaaacttaaacctttataat-cagaggttcaaatcctctccttaaTa common wombat attaaggtggcagagca-ggtaattgcataaaacttaagcctttacaac-cagaggttcaaaCcctctccttaaTa platypus attaaggtgacagagaccggtaattgTgtaaaacttaagcttttatagt-cagaggttcaaatcctctccttaaTa Australian echidna attaaggtgacagagaccggCaattgTgtaaaacttaagcttttataat-cagaggttcaaatcctctccttaaTa . .**. . * * . . * . * * . * **
Compensated Pathogenic Deviation (CPD) Molecular event (substitution or other) that is present in a wild-type in one species and is pathogenic in another species. Compensatory Deviation Molecular event (substitution or other) that negates the deleterious effect of a Pathogenic Mutation
Homo sapiens tRNAAsn 3’ G 5’ U A A U Acceptorstem G C A U U G U G G G U U A U A C C C A A U G A U G U G G G U A C C G G U U U A U G G G U U TYC-stem/loop A U U G G U D-stem/loop C G U A U A Anticodonstem/loop A U G C C A U A G U U Can we say anything about a molecular or structural basis of compensations?
Pan troglodytes(chimpanzee) tRNAAsn 3’ G 5’ U A A U Acceptorstem G C A U G U A U A G G G U U A U A C C C A A U G A U G U G G G U A C C G G U U U A U G G G U U TYC-stem/loop A U U G G U D-stem/loop U A C U A G U A A U Anticodonstem/loop G C C A U A G U U Figure 2a
Cynocephalus variegatus (Malayan flying lemur) tRNALys 3’ A Acceptorstem 5’ C G A U G C U A C A U G C U A U U CA C G C A D-stem/loop A C C C U U C A A C A U U G G A A G G U C G A C U A U C A A C G A G A C A A U A A TYC-stem/loop U U G A U A U A A U Anticodonstem/loop A U C G C A U A U U U Figure 2b
human CG Common ancestor CA UG UA chimp
Ceratotherium simum (white rhinoceros) tRNATrp 3’ G 5’ A U Acceptorstem G C G C U A A U A U U A TYC-stem/loop U A A C A U U U C A U A A A C U U G G A A G U A A A C C U C G A C C U C A C G G UA A A D-stem/loop A A U C G C A G C Anticodonstem/loop G A C C G C A U A U A C Figure 2c
Ursus maritimus(polar bear) tRNASer(UCN) 3’ A 5’ G U A U A U G C A U Acceptorstem A G U U A U G C C U A U G A C U U C C A G G U A U A G A G G G C C G G U U A U U A U G G G C U TYC-stem/loop U A C C U G C U A U G D-stem/loop C G U A G U A Anticodonstem/loop G C G C C A U A U A G Figure 2d
Spalax ehrenbergi(Ehrenberg's mole-rat) tRNAIle 3’ A 5’ A U G C Acceptorstem A U A U TYC-stem/loop A U A C G U A U A C G U U C U C C A U G A A G A G G A G C C U C U U U A A A G C A G A A UU C A G A U A U A D-stem/loop A U G A U Anticodonstem/loop C G U A U G U A G U A Figure 2e
Tamandua tetradactyla (southern tamandua) tRNAIle 3’ A 5’ A U G C A U Acceptorstem A U TYC-stem/loop A U U A C A A U G C U A U C U C C U U C G A A G A G G A G C C U C U C A U A A A G A G G A U A U C C A D-stem/loop U A A A A U U G U A A U Anticodonstem/loop C G U A U G U A G U A
Hyperoodon ampullatus (northern bottlenose whale) tRNALeu(UUR) 3’ A 5’ G C Acceptorstem U A U A U G C A G U A U G C D-stem/loop G C A C U A U U A U C U C C C G U A C G A G A C G A G A G G U C U U C G C U G U C TYC-stem/loop U G A C A C G A C C U A U C U A A U Anticodonstem/loop A U A U C A U C A C U A A U A Figure 2f
Tachyglossus aculeatus (Australian echidna) tRNALeu(UUR) 3’ A 5’ A U C G U A U A Acceptorstem A U A U U G C D-stem/loop A G C U C A U G A U C U C C U G A A A C G A G A G G C G A C A C U U C G TYC-stem/loop U U U G U G A A C A G A C C G U U U A A A U C A U Anticodonstem/loop A U C A U C C A U G A U A A
Oryctolagus cuniculus (rabbit) tRNACys 3’ U 5’ A U G C C G U C G C G A C C U G G C A C A A C G U C U A G G U C G C A G C G G U G A U U A C A C A U U A A A G A U U A U G U A G C A U A U U A U A G A C
Canis familiaris (dog) tRNALeu(UUR) 3’ A 5’ G C U A Acceptorstem U A A U G C U A G C A U G C A G U U G C A U C U C C G C U A G A C G C A G A G G C U U G C C U G C TYC-stem/loop U G A G U A A C U U C U A A G D-stem/loop A U A A U Anticodonstem/loop A U A C A C C U A U A A Wittenhagen, L.M. & Kelley, S.O., Nat. Struct. Biol. (2002) and Trends Biochem. Sci. (2003),
So what? • This can be used to study the limits of tRNA stability in evolution • DM incompatibilities are intergenic, not expected to be revealed in F1 generation • Molecular basis of compensatory evolution is much more varied than has been appreciated • Fitness ridges of tRNAs are very epistatic such that 50% of all substitutions are compensatory • Fixation of CPD and/or Compensatory mutations occurs under positive selection
Usual model of fitness: fitness potential f(p) = fitness, where p is the fitness potential such that p = c1a + c2b … + cnn where cnn is the total fitness contribution of allele (mutation) n This model cannot describe the evolutionary trajectory of CPDs.
Fitness in colour: Low fitness Medium fitness High fitness Neutral case: (1,0) (1,1) CPD (0,0) (0,1) Compensatory
Other types of CPD fitness surfaces (1,0) (1,1) (1,0) (1,1) CPD CPD (0,0) (0,1) (0,0) (0,1) Compensatory Compensatory (1,0) (1,1) (1,0) (1,1) CPD CPD (0,0) (0,1) (0,0) (0,1) Compensatory Compensatory
Fitness: From DePristo et al. Nat. Genet. Rev. 2005
Fitness Genotype Genotype
Acknowledgements Alexey Kondrashov NCBI, NIH Shamil Sunyaev Harvard Medical School Andrew Kern University of California, Santa Cruz Financial Support National Science Foundation Graduate Research Fellowship