1 / 34

Onset of J/ y Melting in Quark-Gluon Fluid at RHIC

International Nuclear Physics Conference 2007@Tokyo, Japan, 2007/6/5. 1. Onset of J/ y Melting in Quark-Gluon Fluid at RHIC. Taku Gunji Center for Nuclear Study University of Tokyo. Paper: hep-ph/0703061 Collaboration with: Hideki Hamagaki (CNS, Univ. of Tokyo),

Download Presentation

Onset of J/ y Melting in Quark-Gluon Fluid at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. International Nuclear Physics Conference 2007@Tokyo, Japan, 2007/6/5 1 Onset of J/y Melting in Quark-Gluon Fluid at RHIC Taku Gunji Center for Nuclear Study University of Tokyo Paper: hep-ph/0703061 Collaboration with: Hideki Hamagaki (CNS, Univ. of Tokyo), Tetsuo Hatsuda, Tetsufumi Hirano (Phys. Dept. Univ. of Tokyo)

  2. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 2 Outline • Physics Motivation • J/y suppression at RHIC • Hydro+J/y model • Results • Summary and Outlook

  3. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 3 Physics Motivation • Quark-Gluon-Plasma (QGP) • New state of QCD matter expected to be created at high temperature (Tc = 160-190MeV). • Quarkonia suppression in QGP • Color Debye Screening • T.Matsui & H. Satz PLB178 416 (1986) • Suppression depends on temperature (density) and radius of QQbar system. • TJ/y : 1.6Tc~2.0Tc • Tc, Ty’ : ~ 1.1Tc • Serve as the thermometer in QGP. M.Asakawa and T.Hatsuda, PRL. 92, 012001 (2004) A. Jakovac et al. PRD 75, 014506 (2007) G.Aarts et al. arXiv:0705.2198 [hep-lat]. (Full QCD)

  4. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 4 R.Rapp et al, EPJC43 (2005) 91 N. Xu et al, nucl-th/0608010 total total recombination dissociation dissociation recombination J/y Suppression at RHIC A. Adare et al. (PHENIX) nucl-ex/0611020 M. J. Leitch nucl-ex/0701021 T. Gunji (PHENIX) nucl-ex/0703004 • Two proposed scenarios: • Gluon dissociation + recombination • Dissociation by thermal gluons supplemented by the regeneration of J/y from ccbar coalescence • R. Rapp et al. [EPJC34, 91 (2005)], L. Yan et al. [PRL97,232301 (2006)], R. Thews [NPA783 301(2007)], A.Andronic et al.[nucl-th/0701079], etc

  5. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 5 SPS overall syst ~17% M. J. Leitch QM2006 0 = 1 fm/c used here PHENIX overall syst~12%& ~7% J/y Suppression at RHIC • Two proposed scenarios: • Sequential Melting of J/y • Absence of the feed down J/y from cc and y’ (30-40%) just above Tc and melt of direct produced J/y. • F. Karsch et al., PLB 637 (2006) 75 etc • J/y suppression at SPS • can be understood from the melting of y’and cc. • Stronger suppression in central Au+Au collisions compared to the feed down from cc and y’.

  6. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 6 Hydro+J/y model • First attempt for the study of sequential suppression of charmonia at RHIC. • Incorporate J/y, cc and y’ into the evolution of matter. • Evolution of matter : (3+1)-dimentional relativistic hydrodynamics • T. Hirano and Y. Nara, PRL 91, 082301, (2003) • T. Hirano and Y. Nara, PRC 69, 034908, (2003) • T. Hirano and K. Tsuda, PRC 66, 054905, (2002) • http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano/parevo/parevo.html • J/y, cc and y’ : impurity traversing through the matter • This study is focused on mid-rapidity data since : • hydrodynamical description of various observables is best • established in mid-rapidity (dN/dy, v2, pT dist., hard probes).

  7. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 7 b (pT) f x0 J/y Modeling of J/y suppression • Survival Prob. In the medium: • Decay Width: • Motion of J/y: free streaming • Total Survival Prob. • Free Parameters: • (TJ/y, Tc, fFD ) • x0(Production point) is • distributed according to the • spatial Ncol distribution. • pTis distributed according to • the measured J/y distribution. • J/y azimuthal angle, F, • is flat (0 to 2p).

  8. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 8 Model results • Reproduce experimental SJ/ytot(=RAA/CNM). • Min. c2 at (TJ/y, Tc, fFD) = (2.02Tc, 1.22Tc, 30%) Onset of J/y suppression at Npart ~ 160. ( Highest T at Npart~160 reaches to 2.02Tc.) Gradual decrease of SJ/ytot above Npart~160 reflects that the transverse area with T>TJ/y increases. Bar: uncorrelated sys. Bracket: correlated sys.

  9. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 9 Sensitivity for TJ/y • TJ/y/Tc = 1.9, 1.96, 2.02, 2.08, 2.14 • Tc = 1.22Tc and fFD=30% Theoretical SJ/ytot is very sensitive to TJ/y. TJ/y =2.14Tc TJ/y =2.08Tc TJ/y = 2.02Tc TJ/y = 1.96Tc TJ/y = 1.90Tc

  10. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 10 c2 contour • c2 contour (TJ/y vs. Tc) at fFD = 30%. • Min. c2 = 0.86 at (TJ/y, Tc)=(2.02Tc, 1.22Tc) Tc/Tc TJ/ycan be determined in a narrow region around 2.02Tc. Tc is not well determined since it is correlated to fFD. 2s (Dc2=8.03) 1s (Dc2=3.53) Min. c2 (=0.86) TJ/y/Tc

  11. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 11 Summary • J/y suppression at mid-rapidity at RHIC was investigated using hydro+J/y model. • Dynamical and quantitative approach to the sequential charmonia suppression. • Comparison of the experimental survival probability shows: • Observed suppression is described well with TJ/y~2.02Tc. • TJ/y can be determined in a narrow region. • In accordance with the lattice QCD results.

  12. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 12 Outlook • On Going issues: • Prediction of J/y azimuthal anisotropy • More realistic treatment of Decay width • “Hot Wind” (Relative velocity dependence of TJ/y) • AdS/CFT Correspondence: • Complete thermalization of J/y (Free streaming) • Will be done: • Study the J/y suppression at forward-rapidity with hydro+J/y model. • Connection with gluon saturation (CGC). • Fine tuning of hydrodynamics at forward-rapidity is on going. • Application to Cu+Cu system. H. Liu, K. Rajagopal and U. A. Wiedemann : hep-ph/0607062.

  13. Back Up Slide Memo Forward Suppression Sudden suppression (v2, SAA vs. pT) Smearing of Decay width(SAA) Hot-wind (SAA,v2, SAA vs. pT) Complete thermalization(SAA, v2)

  14. International Nuclear Physics Conference 2007@Tokyo, Japan, T. Gunji 14 Temperature field • Normalized by Tc(=170 MeV) b=2.1 fm (Npart=351) b=8.5 fm (Npart=114)

  15. 15 (dN/dy)AuAu (dN/dy)pp x<Ncol> RAA = J/y Measurement at RHIC • RAA vs. Cold Nuclear Matter effects. RHIC CNM effects (sabs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 d+Au data-driven prediction of CNM effects (not shown here): R. Granier de Cassagnic hep-ph/0701222

  16. 16 sabs dependence • Use sabs=0,2 mb • Min. c2 at: (TJ/y, Tc, fFD) =(2.00Tc, 1.02Tc, 35%) for sabs=0mb =(2.02Tc, 1.02Tc, 15%) for sabs=2mb TJ/y is insensitive to the nuclear absorption cross section.

  17. 17 pT dependence of SAA • Free Streaming • Survival Prob. Is almost flat as a function of pT Survival Prob. Vs. pT (J/y, c, total) RAA vs. pT by PHENIX 0-10% 10-20% 40-50% 20-30%

  18. 18 Prediction of J/y v2 v2. vs. pT (J/y, c, total) 0-10% 10-20% v2=3% c J/y 20-30% 40-50% Total (30% feed down) v2=3%

  19. 19 Smearing of Decay Width • Decay Width : • Gdecay= 0.5My[1+tanh(l(T/Tc-Tmelt/Tc))] Decay Width Survival Probability T/Tc

  20. 20 Hot Wind • Tmelt(v) = Tmelt(v=0)/sqrt(grel) H. Lui, K. Rajagopal, U. A. Wiedemann hep-ph/607062-v3 Solid : Free streaming Dashed : Hot wind • (TJ/y, Tc, fFD) in hot wind • =(2.08Tc, 1.36Tc, 35%)

  21. 21 SAA and v2 vs. pT in Hot Wind • Tmelt(v) = Tmelt(v=0)/sqrt(grel) Survival Prob. Vs. pT (J/y, c, total) v2. Vs. pT (J/y, c, total) 0-10% 10-20% 0-10% 10-20% v2=5% 20-30% 40-50% 20-30% 40-50% v2=5%

  22. 22 Complete Thermalization • T>Tc: J/y moves according to fluid velocity vector. • T~Tc: J/y freeze-out: • Re-arrange the J/y px, py and pz using Boltzman Eq (in local fluid coordinate). • Then boost J/y according to the fluid velocity vector.

  23. 23 pT and v2 of flowed J/y • J/y participating the flow v2 dN/dpT [A.U]

  24. 24 pT and v2 in complete thermalization • Only Directly produced J/y dN/dpT v2 flow, non-flow, flow+non-flow flow, non-flow,flow+non-flow 0-10% 10-20% 0-10% 10-20% 20-30% 40-50% 20-30% 40-50%

  25. 25 RAA 1 Bar: uncorrelated error Bracket : correlated error 0 Open charm yield in Au+Au @ 200 GeV 1 =0 ~60% =2 RAA (1.2<|y|<2.2)/RAA (|y|<0.35) 0 Forward rapidity • Stronger suppression at forward rapidity. • Gluon saturation (CGC)? • Leading to suppression of charm production K. L. Tuchin hep-ph/0402298 Suppression pattern due to CGC

  26. 26 Forward Rapidity • Experimental SJ/ytot (y=2) • CNM at y=0 & CGC suppression (y=2/y=0) • Model SJ/ytot (y=2) • Hydro at y=2 SJ/y(y=0)=RAA/CNM(y=0,sabs=1mb) SJ/y(y=2)=RAA/R(CGC)/CNM(y=0,sabs=1mb) • Need larger feed-down • fraction at y=2. • Onset of suppression • at Npart ~ 240? • 2.02Tc is achieved • at Npart~240 at y=2? • Further analysis is on going. (TJ/y,Tc) = (2.02Tc,1.22Tc) FD = 30% (y=0), FD= (35-50)% (y=2)

  27. 27 Melting temperature • Spectral analysis in quenched lattice. Asakawa & Hatsuda, hep-lat/0308034 Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312037 cc J/y hc J/y Tc~270 MeV T. Hatsuda QM2006 (hep-ph/0702293) J/y may survive up to ~2Tc. cc and y’ would melt at ~1Tc.

  28. 28 Melting temperature • Spectral analysis in full lattice (Nf=2). T. Hatsuda QM2006 (hep-ph/0702293) Aarts et al., hep-lat/0610065 hc J/y Tc~170 MeV Even with the light quarks, J/y may survive up to ~2Tc.

  29. 29 (dN/dy)AuAu (dN/dy)pp x<Ncol> Suppression by: x4 (y~0) x5 (y~2) RAA = J/y suppression at RHIC • PHENIX experiment • |y|<0.35 (ee) & 1.2<|y|<2.2 (mm) RAA 1 Au+Au PHENIX Final (nucl-th/0611020) Cu+Cu PHENIX Preliminary 0 T. Gunji (PHENIX), QM06, nucl-ex/0703004

  30. 30 Low x2 ~ 0.003 (shadowing region) 0 mb RdAu 3 mb Cold Nuclear Matter (CNM) effects • Nuclear absorption + Gluon shadowing (anti-shadowing) • Studied in d+Au collisions. • Consistent with the shadowing picture. • Weak absorption cross section: • sabs=0-3mb • R.Vogt, PRC71 054902 (2005) • CGC also describes CNM effects. • D. Kharzeev et al., NPA770 (2006) 40

  31. 31 pT [GeV] Hydro data are open to public: http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano/parevo/parevo.html Hydro. calculation • (3+1) dimensional hydro. (t,x,y,hs) • r, T, v(vx,vy) at (t,x,y,hs) • t0 = 0.6 fm/c, Tc=170 MeV • Massless parton gas (u,d,s,g) • Tuned to reproduce dN/dh h T.Hirano and Y.Nara, PRL91,082301(2003); T.Hirano and Y. Nara PRC69,034908(2004); T.Hirano and K.Tsuda, PRC66,054905(2002).

  32. 32 pT [GeV] Hydro+Jet model • Hydro+“hard probe” works. • Identified hadron spectrum • Back-to-back correlation • Pseudo-y dependence of RAA T. Hirano and Y. Nara PRC69 034908 (2004) T. Hirano and Y. Nara PRL91 082301 (2003) T. Hirano and Y. Nara PRC68 064902 (2003)

  33. 33 TJ/y comparison • This study shows TJ/y~2.02Tc. • Estimation of TJ/y in 3-falvor QCD from quenched lattice QCD. = 1.7 = 270/170 Asakawa & Hatsuda, hep-lat/0308034 This coincides with the result obtained in this study.

  34. 34 cc feed-down fraction Feed down fraction • Feed down fraction • ~40% of J/y from cc and y’

More Related