560 likes | 1.46k Views
ONCOMINE: A Bioinformatics Infrastructure for Cancer Genomics. Dan Rhodes Chinnaiyan Laboratory Bioinformatics Program Cancer Biology Training Program Medical Scientist Training Program University of Michigan Medical School. Outline. Background DNA Microarrays and the Cancer Transcriptome
E N D
ONCOMINE: A Bioinformatics Infrastructure for Cancer Genomics Dan Rhodes Chinnaiyan Laboratory Bioinformatics Program Cancer Biology Training Program Medical Scientist Training Program University of Michigan Medical School
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
The Cancer Transcriptome • 180+ studies profiling human cancer • Each profiling 5 – 100+ samples • We estimate > 10,000 microarrays • 10k chips measuring 20k genes • = 200+ million data points
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Oncomineoncology + data-mining = oncomine • 105 independent datasets (90 analyzed) • 7,292 cancer microarrays • 79 million gene expression measurements • 382 distinct cancer signatures • > 5 million tests of differential expression • > 5 million tests of gene set enrichment • > 5 billion pairwise correlations
Oncomine • Database – relational, Oracle 9.2 • Statistical computing – R, Perl, Java • Front End – Java Server Pages • Server – Apache/Tomcat • Graphics – Scalable Vector Graphics (SVG)
Data Collection • Monthly Pubmed searches (cancer + microarray + transcriptome + tumor + gene expression profiling) • Gene Expression Repositories • Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) • ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) • Stanford Microarray Database (http://genome-www5.stanford.edu/) • Whitehead Cancer Genomics (http://www.broad.mit.edu/cancer/)
Data Normalization • Global normalization – same scaling factors applied to all microarray features – mean and variance normalization • Affymetrix - Quantile normalization • Spotted cDNA - Loess normalization • normalize an M vs. A plot
Data Storage • Generic data structures to accommodate a variety of data • Samples • Microarray Features / Genes • Normalized Data • Statistical Tests • Gene Sets
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & schema • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Two-sided t-test for each gene: False discovery rate correction for multiple hypothesis testing Differential Expression Analysis
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Oncomine Tutorial part I • Gene Differential Expression • Gene Co-Expression • Study Differential Expression WWW.ONCOMINE.ORG EMAIL: SHORTCOURSE PASSWORD: MCBI
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Therapeutic Targets / Biomarkers • Gene Ontology Consortium • Biological Process (apoptosis, cell cycle) • Cellular Component (cytoplasmic membrane, extracellular) • Molecular Function (kinase, phosphatase, protease, etc.) • Known Therapeutic Targets • NCI Clinical Trials Database • Therapeutic Target Database
Therapeutic Target Database 338 proteins with Literature-documented Inhibitor, antagonist, Blocker, etc. http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Metabolic & Signaling Pathways • KEGG • Kyoto Encyclopedia of Genes & Genomes • 87 metabolic pathways, 1700 gene assignments • Biocarta • Signaling pathways reviewed and entered by ‘expert’ biologists • 215 signaling pathways, 3700 gene assignments
Pathway enrichment analysis • Identify pathways and functional groups of genes deregulated in particular cancer types • Enrichment Analysis using Kolmogrov-Smirnov Scanning (Lamb et al)
Kolmogrov-Smirnov Scanning (Lamb et al) 1 2 * 3 4 * 5 6 * 7 * 8 9 10 11 12 13 14 15 16 17 18 * 19 20 (1,2,3,4…,19,20) Vs. (2,4,6,7,18)
Pathway Enrichment Liver vs. other Normal tissues
Pathway enrichment analysis A search for the Biocarta pathways most enriched in a medulloblastoma signature (C2) uncovered involvement of the Ras/Rho pathway
Pathway enrichment analysis cont. A direct link to the Biocarta pathway provides the details (Medulloblastoma genes with red boxes)
Outline • Background • DNA Microarrays and the Cancer Transcriptome • ONCOMINE • Data collection, normalization & storage • Statistical Analysis • Visualization of Data and Analysis • ONCOMINE Data Integration • Therapeutic Targets / Biomarkers • Metabolic and Signaling Pathways • Known protein-protein Interactions • ONCOMINE tutorial
Known Protein-Protein Interactions • HPRD • Human Protein Reference Database • Manually curated • 20,000+ papers, 15,000+ distinct interactions • PKDB • Protein Kinase Database • Natural Language Processing • 60,000+ abstracts suggest interaciton, 16,000 distinct interactions • Error prone • Co-RIF • Locus Link Reference into Function • 12,000+ co-RIFs