1 / 18

Qualitative Comparative Analysis

Qualitative Comparative Analysis . What, When and How? Dumitrela Negur ă BA. Qualitative Comparative Analysis (QCA). Introduced by Charles Ragin in 1987, when stumbling upon the causal inference problems generated by a small sample

suki
Download Presentation

Qualitative Comparative Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Qualitative Comparative Analysis What, When and How? DumitrelaNegură BA

  2. Qualitative Comparative Analysis (QCA) • Introduced by Charles Ragin in 1987, when stumbling upon the causal inference problems generated by a small sample • Represents a method thatbridges qualitative and quantitative analysis • Why? Because it is difficult to do in-depth qualitative work with sets larger than 15 (although not impossible) and is not very meaningful to do traditional statistical approaches on sets this small

  3. Most aspects of QCA requirefamiliarity with cases and in-depth knowledge of the theory • With QCA, it is possible to assess causation that is very complex, involving different combinations of causal conditions capable of generating the same outcome

  4. When do we use it ? • It is used in comparative case-oriented and in small scale research, for studying a small-to-moderate number of cases in which a specific outcome has occurred, compared with those where it has not • It is very useful when you have small samples (N=8 to N=200 or N=5 to N=50) • Used in : sociology, psychology, political science and history but can be applied to health related research

  5. How? • QCA uses as units of analysis crisp and fuzzy sets and subsets

  6. Crisp sets • QCA was developed originally for the analysis of configurations of crisp set memberships (conventional Boolean sets) • With crisp sets, each case is assigned one of two possible membership scores in each set included in a study: 1 (yes/ presence) or 0 (no/ absence)

  7. Fuzzy sets • Fuzzy sets( fs/QCA) solve the problem of trying to force-fit cases into one of two categories • Fuzzy sets can have three or more categories (any value between 0 and 1): 1.00 = fully in 0.80 = mostly in 0.60 = more in than out 0.40 = more out than in 0.20 = mostly out 0.00 = fully out ! Are not well suited for conventional truth table analysis !

  8. Crisp vs. Fuzzy sets

  9. Crisp-set analysis • The simple way is to construct truth tables ( used only for crisp sets) and use Boolean algebra, considering all the logical combination of the causal conditions • The three basic Boolean operators are: • logical OR (+) • logical AND (*) • logical NOT (replacing the upper case letter with a lower case letter) • A dash symbol [-] represents the “don’t care” value for a given binary variable, meaning it can be either present (1) or absent (0) • The arrow [→] is used to express the link between a set of conditions For example: A+B *C-> Y or a+B*c->y ( where Y is the outcome)

  10. Truth tables • Truth tables list the logically possible combinations of causal conditions and the outcome associated with each combination • Truth tables help us to see clearly the similarities, differences and contradictions between cases • The number of combination is a geometric function of the number of causal conditions (number of causal combinations = , where k is the number of causal conditions)

  11. Causal relations are interpreted in terms of necessaryand sufficientconditions • With necessity, the outcome is a subset of the causal condition • With sufficiency, the causal condition is a subset of the outcome • Boolean logic is used to reduce the table to a few statements indicating necessary and sufficient conditions and their combinations

  12. Example: The number of combinations for this example will be

  13. Truth table: configuration and minimization This means that we have these possible combinations: G*u*l*e*h + g*U*L*e*H + G*U*L*e*H + g*U*L*E*H -> O g*u*l*E*h + g*u*l*e*h +g*U*l*E*h -> o For example G is a sufficient condition and U is necessary but not sufficient for the outcome(O).

  14. Software • Because the truth tables can be very complex because of their size, a specialized software can be used • The software can generate the truth table and also analyzes fuzzy sets

  15. Free and user friendly softwares For crisp-set analysis: • fs/QCA • TOSMANA • QCA 3.0 For fuzzy-set analysis: • fs/QCA

  16. Regression analysis vs. QCA

  17. To summarize: • QCA offers an alternative approach, bridging the qualitative and quantitative methods and it’s used for small scale research • Used for assessing causation • Uses theory-set relationships • Not hard to use but it demands good knowledge of theory and cases

  18. Thank you 

More Related