1 / 31

Radiative Feedback on the formation of first generation subgalactic objects

Radiative Feedback on the formation of first generation subgalactic objects. Hajime Susa Rikkyo University. First Generation Objects. Predicted by CDM density Perturbation Theory @10<z<30. M>10^6 M_sun (Tvir>10^3 K) Cooled by H2 lines and H-Lyα. Cooling Diagram (RO +H2). 3s.

sutton
Download Presentation

Radiative Feedback on the formation of first generation subgalactic objects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radiative Feedback on the formation of first generation subgalactic objects Hajime Susa Rikkyo University

  2. First Generation Objects • Predicted by CDM density Perturbation Theory @10<z<30. • M>10^6 M_sun (Tvir>10^3 K) • Cooled by H2 lines and H-Lyα

  3. Cooling Diagram(RO +H2) 3s Cluster of Gals. 2s 1s Large Gals. dwarf Gals ? First Generation Objs. 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 10 100

  4. Cooling by H atom Cooling by H2 First Generation Subgalactic Objects Nishi & Susa 1999

  5. Substructure in Galactic Halo Cluster Halo Moore et al. 1999 Galactic Halo 20 times smaller than expected

  6. Feedback

  7. Cooling diagram of primordial gas & SN disruption 100SN Nishi & Susa(1999) Primodial Virialized Gas Cooling+SN disruption 10SN 1SN

  8. SN (Simulation) Wada & Venkatesan 2003 z=10, 10^8 M_sun 1000 SN/Myr →disruption 100 SN/Myr →collapse induced

  9. SN feedback • 10^8 M_sun halos @z=10 seems to be difficult to be destroyed soley by SN. • But more simulations are required to assess the effects of SN feedback…

  10. Impacts of UVB on GF • PHOTOIONIZATION • Production of electrons : catalysts of H2 formation → enhance the fraction of H2 • Enhance the Compton cooling rate • PHOTODISSOCOATION • Dissociation of H2 → No coolant • PHOTOHEATING • Keep the gas temperature 104-105 K • Photo-evaporation • Suppression of SF in gals.

  11. Cooling and heating rates Equilibrium temperature is 104-105K Dynamics of Galaxies with Tvir < 104 K are strongly affected. Photoevaporation Thoul & Weinberg 1996

  12. Blown away by photo-evaporation Late Reionization, CDM density perturbation, and Radiative cooling..... If Z_reion=6, 1σ density perturbations are not prevented from forming stars. 7

  13. Early reionization (WMAP) Spergel et al. 2003 Instantaneous reionization:

  14. Shaded ≒ Blown away by photo-evaporation Early Reionization, CDM density perturbation, and Radiative cooling..... If Z_reion=20, >2σ density perturbations are prevented from forming stars. 20

  15. 3D! Smaller scale sub-clumps In hierarchical clustering scenario, small clumps evolve faster than the parent system.

  16. Method (RSPH) • SPH • Steinmetz & Muller 1993 • Umemura 1993 • Gravity • HMCS in University of Tsukuba(CCP) • GRAPE6, direct-sum • Radiation transfer of ionizing photons • Kessel-Dynet & Burkurt 2000 • Nakamoto, Umemura & Susa 2001 • Primordial chemistry & Cooling • Susa & Kitayama 2000 • Galli & Palla 1998

  17. Model of SF In order to evaluate the case of maximal star formation rate, we assume

  18. Model of UVB Put a source outside the simulation box so that the mean intensity is equal to above value at the center.

  19. Minimally Required I21 再結合=光電離

  20. Typical Result (M=107Msun,Zc=10) 300pc

  21. 3 2 6 5 4 3 2 7 6 5 4 3 2 6 6 5 4 3 6 7 8 9 2 10 Maximally Star-forming model 3s 2s Vc=20 km/s “ Evaporated ” Vc=10 km/s 1s Vc=5 km/s >95% halos are photo-evaporated.

  22. Convergence (# of particles and Softening )

  23. Substructure in Galactic Halo Cluster Halo Moore et al. 1999 Galactic Halo 20 times smaller than expected

  24. Kravtsov et al. (2004) ~10% of halos with 10^8-10^9 M_sun halos are much more massive in the past.

  25. Evidences of invisible substructuresby gravitational lensing • Chiba (2002) • Dalal & Kochanek (2002) Consistent with the CDM N-body simulations

  26. Internal radiative feedback • Kitayama, Yoshida, Susa, Umemura 2004 • single POPIII star at the center of the cloud

  27. ガスの消失 ガスは失われず ガスはほぼ完全に消失 ただしガスは星が消えると10^7 yrくらいかけて戻ってくる。

  28. 原始組成からできる星の質量 • 本当のFirst Stars → Very Massive ? • 再電離を生き残るT_vir>10^4 K くらいの雲→ 電離度高 • 電離度高→H2が多量にできる • H2が多量にできるとHDが多量にできる⇒温度が下がって分裂の質量が少し100Msunよりだいぶ小さくなる(F.Nakamura)。 

  29. 水素分子の過剰生成 Susa et al. 1998 衝撃波の後面で再結合 の遅れ およそ50km/s以上の 衝撃波では水素分子量 がa few ×10^{-3}程度 数万度以上の ビリアル温度を持つ雲では この過程が起きる。

  30. Fragment mass Nakamura & Umemura 2002

  31. Summary • 3D RHD の方法で早期再電離のモデルの計算を行った。 • 20km/s以下のビリアル温度を持つ天体の形成は、早期再電離モデルでは著しく阻害される。 • 内部のPOPIII星からのradiative feedbackの影響も大きく、10^7Msun以下の天体は電離による加熱でガスを失う。 • したがって星団としての銀河が誕生するのはビリアル温度が10^4K以上の天体と考えられるが、それらの天体ではたとえメタルがほとんどなくても星の質量は少し下がる可能性がある。

More Related