190 likes | 314 Views
H Mathematica στην υπηρεσία της Φυσικής. Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica. Πρόβλημα 1 1 α : Βολές Πρόβλημα 1 1 β : Κινήσεις Πλανητών. Πρόβλημα 11 α : Βολές.
E N D
H Mathematicaστην υπηρεσίατης Φυσικής Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica Πρόβλημα 11α: ΒολέςΠρόβλημα 11β: Κινήσεις Πλανητών
Πρόβλημα 11α: Βολές Για το πρόγραμμα αυτό θα χρειαστεί να υπολογίσουμε τις θέσεις του σώματος κάποιες χρονικές στιγμές, τις αντίστοιχες ταχύτητες και τις αντίστοιχες επιταχύνσεις. Η εντολή που θα χρησιμοποιήσουμε είναι η Do: Η εντολή Do επαναλαμβάνει μια σειρά εντολών σύμφωνα με την τιμή μιας παραμέτρου (n) Από μέχρι με βήμα Plot[Sin[1.00x], {x,0,2π}] Plot[Sin[1.25x], {x,0,2π}] Plot[Sin[1.50x], {x,0,2π}] Plot[Sin[1.75x], {x,0,2π}] Plot[Sin[2.00x], {x,0,2π}] Plot[Sin[2.25x], {x,0,2π}] Plot[Sin[2.50x], {x,0,2π}] Plot[Sin[2.75x], {x,0,2π}] Plot[Sin[3.00x], {x,0,2π}] Με τη βοήθεια της Do μπορούμε να δημιουργήσουμε και μια κινούμενη απεικόνιση της βολής καθώς προβάλλει τις διαδοχικές θέσεις του κινητού χρησιμοποιώντας τις τιμές x[t], y[t] που υπολογίζονται. Η παραπάνω εντολή ισοδυναμεί με την σειρά εντολών:
Πρόβλημα 11α: Βολές Οι κινούμενες απεικονίσεις στηρίζονται στην εμφάνιση των διαδοχικές θέσεις του κινητού. Οι εντολές που θα χρησιμοποιήσουμε είναι οιGraphics, Point: Η εντολή Graphics υπολογίζει τη θέση ενός σημείου με συντεταγμένες {x[t], y[t]} ενώ η εντολή Show το εμφανίζει στην οθόνη. Η εντολή PointSize[0.05] σημαίνει ότι το σημείο αυτό έχει μέγεθος ίσο με το 5% της οθόνης. Με τη βοήθεια της εντολής Do τοποθετούνται διαδοχικά σημεία στην οθόνη. Show[Graphics[{PointSize[0.05],Point[{x[t],y[t]}]}] Διάφορες γενικές ρυθμίσεις των γραφικών ρυθμίζονται με την εντολή Set. SetOptions[Graphics,AspectRatio->1,Axes->Automatic, PlotRange->{{0,20},{-25,0}}] • Το εύρος των x, y καθορίζεται από την PlotRange->{{xmin,xmax},{ymin,ymax}} • Η επιλογή AspectRatio->1 ορίζει την ίδια κλίμακα και στους δύο άξονες (x, y). • Η επιλογή Axes->Automatic σχεδιάζει αυτόματα τους δύο άξονες (x, y).
Πρόβλημα 11α: Βολές • H μελέτη των βολών συνήθως αναφέρεται σε σφαιρικά αντικείμενα που εκτελούν μια σύνθετη κίνηση αποτελούμενη από δύο συνιστώσες: μια οριζόντια κίνηση παράλληλη στην επιφάνεια της γης και μια κατακόρυφη κίνηση. • Σύμφωνα με την αρχή της ανεξαρτησίας των κινήσεων η κάθε κίνηση είναι ανεξάρτητη της άλλης και η θέση και η ταχύτητα του κινητού προκύπτουν για κάθε χρονική στιγμή από το διανυσματικό άθροισμα των αντίστοιχων συνιστωσών. • Το σύστημα αναφοράς για τη μελέτη των βολών είναι ένα σύστημα συντεταγμένων x-y με διεύθυνση x παράλληλη στην επιφάνεια της γης και διεύθυνση y προς το κέντρο της γης. Αξονας x: Αξονας y:
Πρόβλημα 11α: Βολές • Κίνηση στον άξονα των x: Η ταχύτητα Vx είναι σταθερή αν δεν υπάρχει η αντίσταση του αέρα, οπότε αx=0. • Κίνηση στον άξονα των y: Η επιτάχυνση είναι η επιτάχυνση της βαρύτητας g=9.8 m/s2 • Ας θεωρήσουμε την απλή περίπτωση όπου ένα σώμα κινείται πάνω στον άξονα-x (παράλληλα στην επιφάνεια της γης) με ταχύτητα Vx=10 m/sec καιVy=0. • Το κινητό ξενικά από την αρχή των αξόνων (x=0, y = 0) .
Πρόβλημα 11α: Βολές Πρόγραμμα για τον υπολογισμό της κίνησης για ένα χρονικό διάστημα 2 sec: Clear[x,Vx, y, Vy]; ti=0;tf=2;Δt=1/10; x[ti]=0; Vx[ti]=10; y[ti]=0; Vy[ti]=0; g= -9.8; Do[Vx[t+Δt]=Vx[t]; x[t+Δt] = x[t] + Vx[t+Δt]*Δt; Vy[t+Δt] = Vy[t] + g*Δt; y[t+Δt] = y[t] + Vy[t+Δt]*Δt, {t,ti,tf,Δt}] Κάθε φορά που εκτελείται η εντολή Do το πρόγραμμα υπολογίζει την νέα θέση του κινητού.
Πρόβλημα 11α: Βολές Τα δεδομένα x[t] και y[t] για να γίνουν γραφική παράσταση πρώτα χρησιμοποιείται η εντολή Table (function) για να δημιουργηθεί μια λίστα δεδομένων και στη συνέχεια η εντολή ListPlot για να εμφανιστεί το γράφημα. data=Table[{x[t],y[t]},{t,ti,tf,Δt}]; ListPlot[data, AxesLabel{"x","y"}, PlotStyle->PointSize[0.015]]
Πρόβλημα 11α: Βολές Μπορείτε εύκολα να δημιουργήσετε μια ρεαλιστική απεικόνιση της βολής , αν είχατε διαδοχικά φωτογραφικά στιγμιότυπα της βολής SetOptions [Graphics, AspectRatio 1, Axes->Automatic,PlotRange {{0,20},{-25,0}}]; Do[Show[Graphics[{PointSize[0.05], Point[{x[t],y[t]}]}]], {t,ti,tf,Δt}]; To πρόγραμμα αυτό δημιουργεί μια κινούμενη απεικόνιση της βολής καθώς προβάλλει τις διαδοχικές θέσεις του κινητού χρησιμοποιώντας τις τιμές x[t], y[t] που υπολογίστηκαν προηγουμένως.
Πρόβλημα 11α: Βολές 1. Να εμφανίσετε το διάγραμμα x-y καθώς και την κινούμενη απεικόνιση για ελεύθερη πτώση με τις εξής παραμέτρους: 2.Να εμφανίσετε το διάγραμμα x-y καθώς και την κινούμενη απεικόνιση για πλάγια βολή με τις εξής παραμέτρους:
Πρόβλημα 11α: Βολές Για συνιστώσες αρχική ταχύτητας Vx = 10 m/sec και Vy = 15 m/sec υπολογίστε τη γωνία θ και την αρχική ταχύτητα V Επειδή η Mathematica υπολογίζει τη συνάρτηση ArcSin σε ακτίνια πρέπει να πολλαπλασιάσετε με (180/π) για να βγει το αποτέλεσμα σε μοίρες. To πρόβλημα μπορεί να υπολογιστεί και αντίστροφα με δεδομένη την αρχική ταχύτητα και την γωνία θ
Πρόβλημα 11α: Βολές Το πρόγραμμα αυτό υπολογίζει την τροχιά του κινητού σε πλάγια βολή με δεδομένα εισόδου την αρχική ταχύτητα V και τη γωνία θ Ενώ η τροχιά του κινητού εμφανίζεται με τις παρακάτω εντολές data = Table[{x[t],y[t]}, {t,ti,tf,Δt}]; ListPlot[data, AxesLabel->{"x","y"},PlotStyle->PointSize[0.02]] 3. Στην συγκεκριμένη βολή το σώμα δεν φθάνει στο έδαφος. Ρυθμίζοντας το tf από τις αρχικές παραμέτρους μπορείτε να κάνετε το σώμα να φθάνει στο έδαφος;
Πρόβλημα 11α: Βολές 4. Το βεληνεκές μιας πλάγιας βολής είναι η οριζόντια απόσταση που διανύει το κινητό μέχρι να ακουμπήσει το έδαφος. Δοκιμάζοντας διάφορες γωνίες από 10ο ως 90ο να συμπληρώσετε τον παρακάτω πίνακα υπολογίζοντας γραφικά το βεληνεκές και βάζοντας στο tfτην κατάλληλη τιμή ώστε το σώμα να φθάνει κάθε φορά στο έδαφος. Σε ποιο διάστημα γωνιών βρίσκεται το μέγιστο βεληνεκές;
H Mathematicaστην υπηρεσίατης Φυσικής Πως μπορεί κανείς να λύσει προβλήματα Φυσικής με τη βοήθεια της Mathematica Πρόβλημα 11α: ΒολέςΠρόβλημα 11β: Κινήσεις Πλανητών
Πρόβλημα 11β: Κινήσεις Πλανητών • O νόμος της βαρύτητας ανακαλύφθηκε από τον Νεύτωνα και εφαρμόζεται σε όλα τα αντικείμενα που έχουν μάζα. • Η δύναμη αυτή είναι ελκτική και βρίσκεται πάνω στην ευθεία που ενώνει τα κέντρα των δύο μαζών. G=6.67 10-11 Ν m2/kg2 • Η περίπτωση mA>>mBείναι πιο απλή καθώς η κίνηση της μάζας mBέχει μικρή επίδραση στην κίνηση της μάζας mA. • Σε αυτή την περίπτωση, είναι πιο εύκολο να χρησιμοποιήσουμε ένα σύστημα συντεταγμένων όπως η μάζα mAβρίσκεται στο κέντρο του συστήματος. • Η mBείναι η μόνη μάζα που κινείται και βρίσκεται στη θέση (x, y) όπως φαίνεται στο σχήμα.
Πρόβλημα 11β: Κινήσεις Πλανητών Θεωρείστε τις παρακάτω τιμές για τα φυσικά μεγέθη: η σταθερά της παγκόσμιας έλξης: G = 6.67 x 10-11 N m2/kg2, η μάζα του ήλιου mA = 2.0 x 1030 kg, η μάζα της γης mB = 6.0 x 1024 kg. Ο χρόνος για μια πλήρη περιφορά της γης γύρω από τον ήλιο tf: 1 έτος = 365 μέρες = 3.1 x 107 sec και το χρονικό βήμα, t=tf/500. Επίσης η ταχύτητα της γης χρειάζεται σαν αρχική συνθήκη. Θεωρώντας την τροχιά της γης ως κυκλική με ακτίνα r = 1.5 x 1011 m μπορεί να υπολογιστεί από τη σχέση: Ας κάνουμε ένα πρόγραμμα υπολογισμού της τροχιάς ενός πλανήτη Στο πρόγραμμα αυτό οι αρχικές συνθήκες είναι: x[0]=1.0 m καιy[0]=0.0 m, και αρχική ταχύτητα Vy[0]=0.7 m/secκαι Vx[0]=0. Επομένως ο πλανήτης αρχικά βρίσκεται στη δεξιά πλευρά του άξονα x και κινείται προς τα πάνω.
Πρόβλημα 11β: Κινήσεις Πλανητών Για το πρόγραμμα αυτό θα χρειαστεί να υπολογίσουμε τις θέσεις του σώματος κάποιες χρονικές στιγμές, τις αντίστοιχες ταχύτητες και τις αντίστοιχες επιταχύνσεις. Η εντολή που θα χρησιμοποιήσουμε είναι η Do: Από μέχρι με βήμα Η εντολή Do επαναλαμβάνει μια σειρά εντολών σύμφωνα με την τιμή μιας παραμέτρου (n) Plot[Sin[1.00x], {x,0,2π}] Plot[Sin[1.25x], {x,0,2π}] Plot[Sin[1.50x], {x,0,2π}] Plot[Sin[1.75x], {x,0,2π}] Plot[Sin[2.00x], {x,0,2π}] Plot[Sin[2.25x], {x,0,2π}] Plot[Sin[2.50x], {x,0,2π}] Plot[Sin[2.75x], {x,0,2π}] Plot[Sin[3.00x], {x,0,2π}] Η παραπάνω εντολή ισοδυναμεί με την σειρά εντολών:
Πρόβλημα 11β: Κινήσεις Πλανητών Στο συγκεκριμένο πρόβλημα έχουμε τις εξής σχέσεις: Και τις εξής αρχικές συνθήκες Με τη βοήθεια της εντολής Do υπολογίστε τις παρακάτω ποσότητες
Πρόβλημα 11β: Κινήσεις Πλανητών Αν θέλω η Do να επαναλάβει περισσότερες από μία εντολές Το n είναι η παράμετρος που παίρνει τιμές από 0 μέχρι 600 (θα υπολογίσω τιςδιάφορες παραμέτρους 600 φορές) ο χρόνος ανεβαίνει κάθε φορά κατά το 1/600 της περιόδου περιφοράς της γης.
Πρόβλημα 11β: Κινήσεις Πλανητών Η τροχιά του πλανήτη εμφανίζεται με την παρακάτω σειρά εντολών: data = Table[{x[n],y[n]}, {n,0,Steps}]; ListPlot[data, AxesLabel->{"x","y"},AspectRatio->1.0] • Να υπολογίσετε με τη βοήθεια της εντολής Do τις παραστάσεις: V και a (όπως υπολογίσατε την r). • Να κάνετε τις γραφικές παραστάσεις V-r, a-r. • Να υπολογίσετε από το διάγραμμα τις μέγιστες τιμές ταχύτητας και επιτάχυνσης καθώς και σε ποιες θέσεις αυτές εμφανίζονται.