320 likes | 640 Views
Oleh : Misbah , ST, MT Univ. Muhammadiyah Gresik. Mata Kuliah Elektronika Digital. PERANGKAT DIGITAL. Biner (basis 2) { 0,1} Oktal (basis 8) {0,1,2,3,4,5,6,7} Desimal (basis 10) {0,1,2,3,4,5,6,7,8,9} Hexadesimal (basis 16) {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
E N D
Oleh : Misbah, ST, MT Univ. Muhammadiyah Gresik Mata KuliahElektronika Digital
Biner (basis 2) { 0,1} Oktal (basis 8){0,1,2,3,4,5,6,7} Desimal (basis 10) {0,1,2,3,4,5,6,7,8,9} Hexadesimal (basis 16) {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} Contoh : (123)10= 1x102+2x101+3x100 = 1x100+2x10+3x1 SistemBilangan
DesimalkeBiner Contoh : (22)10 = ( 10110)2 Penyelesaian: 22 / 2 sisa 0 11 / 2 sisa 1 5 / 2 sisa 1 2 / 2 sisa 0 1 KonversiBilangan DesimalkeOktal Contoh : (87)10= (127)8 Penyelesaian: 87 / 8 sisa 7 10 / 8 sisa 2 1 DesimalkeHexa Contoh : (30)10 = (1E )16 Penyelesaian: 30 / 16 sisa 14 (E) 1
1. (459)10 = ( )2 2. (320)10 = ( )8 3. (257)10 = ( )16 SOAL :
BinerkeDesimal Contoh = (1110110)2 = ( 118)10 1x26+1x25 +1x24 +0x23 +1x22+1x21+0x20=118 BinerkeHexadesimal Contoh = (1110110)2 = (76)16 01110110 7 6 BinerkeOktal Contoh = (1110110)2 = ( 166 )8 01110110 166 Lanjutan (1)
(101110100)2= ()8 (1110110110)2= ()16 (1100101101)2= ( )10 SOAL :
Hexadesimalkedesimal Contoh : (A6)16 = (166)10 10x161+6x160 =160+6 = 166 Hexadesimalkebiner Contoh : (F4)16 = (11110100)2 F4 11110100 Hexadesimalkeoktal Contoh : (F4)16 = (364)8 F4 11110100 364 Lanjutan (2)
(F12)16= ( )10 (ABC)16= ( )8 (D20)16= ( )2 SOAL :
OktalkeBiner Contoh : (36)8 = (011110)2 3 6 011110 OktalkeDesimal Contoh = (543)8 = (355)10 5x82+4x81 +3x80 =320+32+3 = 355 Lanjutan (3)
TabelKonversi Hexa/OktalkeBiner
1 Bit/digit 1 Byte = 8 bit, memuat satu informasi data. Istilahdalam Digital Karakter ‘A’
Penjumlahan OperasiBilanganBiner • Contoh 1: • 001101 • 100101+ • 110010 • Contoh 2: • 1011011 • 1011010+ • 10110101 • Contoh 3: • 110111011 • 100111011+ • 1011110110 • Contoh 4: • 1010 • 0111 • 1011 +
Perkalian OperasiBilanganBiner (2) • Contoh 2: • 110110111 • 1010111 x • 110110111 • 110110111 • 110110111 • 000000000 • 110110111 • 000000000 • 110110111 • 1001010100110001 • Contoh 1: • 110101 • 111 x • 110101 • 110101 • 110101 • 101110011
Pengurangan OperasiBilanganBiner (3) • Contoh 1: • 10110 • 01010- • 01100 • Contoh 2: • 11011001 • 10101011- • 00101110
Complement : 1’s complement=(2n-N)-1 2’s complement= (2n-N) Contoh: carilah 2’s complement dari N=(101101)2 =(45)10 n=6 26 = 64 2n-N = 64-45=19 = 010011 Contoh : 1’s complement dari (100101)2 = (011010)2 Kesimpulan : 1’s complement = tiap bit di-invers 2’s complement = 1’s complement + 1
1’s Complement Operasipengurangandengankomplemen • Contoh 1: • 10111011 10111011 • 01100110 - 1’s 10011001 + • (1) 01010100 • Contoh 2: • 101110100111 101110100111 • 110110110111 - 1’s 001001001000 + • 110111101111 Extra : (1) positif (0) negatif
Pembagian OperasiBilanganBiner (4) • Contoh 1: • 1100 • 110 1001000 • - 110 • 00110 • -110 • 0000000 • Contoh 2: • 1001 • 1001 1010001 • - 1001 • 0001001 • -1001 • 0000000
HukumKomutatif A + B = B + A A . B = B . A HukumAsosiatif (A+B)+C=A+(B+C) (A.B).C=A.(B.C) HukumDistributif A.(B+C)=A.B+A.C A+(B.C)=(A+B).(A+C) TeoremaBoolean Aljabar • HukumIdentitas • A + A = A • A . A = A • HukumNegasi • (A) = A • (A) = A • HukumRedundansi • A+A.B = A • A.(A+B)= A
Teorema Boolean Aljabar (2) • T7 : • 0 + A = A • 1 . A = A • 1 + A = 1 • 0 . A = 0 • T8 : • A + A = 1 • A . A = 0 • T9 : • A + A.B = A+B • A . (A+B)=A . B • T10 : • (A + B) = A . B • (A . B)=A + B
Boolean Aljabar TABEL KEBENARAN : NB : ‘0’ menyatakanSalah ‘1’ menyatakanBenar
Contoh : carilahtabelkebenaran F = A.B + B.A FungsiAljabarboolean
Contoh: carilahtabelkebenaran F = A.B.C + A.B + B.C FungsiAljabarboolean (2)
Contoh :carilahtabelkebenaran F = A.B.C.D + A.B.C.D + B.C.D + A.C.D FungsiAljabarboolean (3)
Contoh 1: F= A.B + A.B + A.B (sederhanakan) Jawab : F = A.B + A.B + A.B = (A + A).B + A.B = 1 . B + A.B = B + A.B = B + A Contoh 2: F= A + A.B + A.B (sederhanakan) Jawab : F= A + A.B + A.B = (A + A.B) + A.B = A + A.B = A + B Penyederhanaanfungsialjabarboolean
Contoh 3: F= A.B + A.B (sederhanakan) Jawab : F = A.B + A.B = (A.B) . (A.B) = (A+B) . (A+B) = A.A + A.B + B.A + B.B = 0 + A.B + A.B + 0 = A.B + A.B Penyederhanaanfungsialjabarboolean