1 / 35

Photoelectron Spectroscopy of Multiply-Charged Anions

Photoelectron Spectroscopy of Multiply-Charged Anions. Lai-Sheng Wang Department of Physics, Washington State University & Chemical & Materials Sciences Division, Pacific Northwest National Laboratory. Ken: Congrat to your (60 ± 1)th B-Day!. Anion 2007 6/29 – 7/3, 2007 Park City, Utah .

tacy
Download Presentation

Photoelectron Spectroscopy of Multiply-Charged Anions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Photoelectron Spectroscopyof Multiply-Charged Anions Lai-Sheng Wang Department of Physics, Washington State University & Chemical & Materials Sciences Division, Pacific Northwest National Laboratory Ken: Congrat to your (60±1)th B-Day! Anion 2007 6/29 – 7/3, 2007 Park City, Utah

  2. Multiply-charged anions were rarely observed in the gas phase

  3. The earliest observed doubly charged anion J. Chem. Phys. 50, 1896 (1969)

  4. Doubly-charged carbon clusters and fullerenes Phys. Rev. Lett. 65, 625 (1990) Cn2– (n = 7-28) by Cs+ sputtering of graphite J. Am. Chem. Soc. 113 , 6795 (1991) Phys. Rev. Lett. 67, 1242 (1991)

  5. Prior research on multiply-charged anions Experimental: Mass spectrometry observations (70’) Compton et al.: first observation of Cn2- (n = 7-28) (1990) C602-: Coe et al. and Compton et al. (91’) Kebarle, Lau, etc: electrospray (mid-90’s) Theoretical: (1990’s) Boldyrev/Gutsev (J. Phys. Chem. 94, 2256, 1990) high EA species; MkXk+1- or (MX)kX-, stable dianions MkXk+22- Cederbaum (Scheller, Compton & Cederbaum, Science270, 1160, 1995) Simons/Boldyrev/Gutowski (Acc. Chem. Res. 29, 497, 1996) Ortiz Landman …

  6. Multiply-charged anionsare common in the condensed phase • Simple oxo-anions SO42-, CO32-, PO43-, C2O42-, S2O82-, Si2O52-, CrO42-, Cr2O72-, VO43-, RuO43-… • Inorganic and organometallic multiply- charged anions MX42-, MX62-, (X = Metal, X = halides)… • Organic multiply-charged anions • Biomolecules

  7. n- M -HV Evaporation Breakup John B. Fenn et al. J. Phys. Chem. 88, 4451 & 4671 (1984): Nobel Prize 2002 Electrospray IonizationInterface between solution and gas phase n- M beam Heated Electrospray Desolvation Skimmer Capillary Capillary Charged droplets Kebarle, Lau, etc: ESI MS of MCA (mid-90’s)

  8. Solution-phase chemistry in the gas phase Unique properties of multiply-charged anions Nature400, 245 (1999); Phys. Rev. Lett.81, 2667 (1998); 81, 3351 (1998); J. Chem. Phys.110, 3635 (1999); Phys. Rev. Lett. 83, 3402 (1999); J. Phys. Chem. A 104, 1978 (2000); Chem. Phys. Lett. 307, 391 (1999);… Electronic structure of solution anions and complexes in the gas phase Re2Cl82-, S2O82-, Cr2O72-, H2P2O72-, Ru6(CO)182-, ZrF62-, ML62- (M = Re, Os, Ir, Pt), … J. Chem. Phys. 111, 4497 (1999); 112, 6959 (2000); J. Am. Chem. Soc. 112, 2096 (2000); 112, 2339 (2000); J. Phys. Chem. A 104, 4429 (2000); 105, 10468 (2001); J. Am. Chem. Soc. 122, 8305 (2000)… Solvation and solvent stabilization of complex and multiply-charged anions SO42-(H2O)n, C2O42-(H2O)n, NO3-(H2O)n, F-(H2O)n, -O2C-(CH2)x-CO2-(H2O)n, … Science294, 1322 (2001); J. Chem. Phys. 113, 10837 (2001); 115, 2889 (2001); 116, 561 (2002); J. Phys. Chem. A 106, 7607 (2002); J. Am. Chem. Soc. 124, 10182 (2002); JACS 126, xxx (2004)… Probing the electronic structure of Fe-S clusters, complexes and Fe-S proteins Phys. Rev. Lett.89, 163401 (2002); J. Phys. Chem. A 107, 1703 (2003); 107, 2821 (2003); 107, 2898 (2003); J. Phys. Chem. A 107, 4612 (2003); J. Am. Chem. Soc. 125, 14072 (2003)…

  9. Current experimental effort on multiply charged anions Compton: Coulomb barrier, electron attachment (ESI) Kappes: PES, laser detachment, lifetime in a Penning trap ESI/Laser ablation Denmark group (Nielsen, Andersen, Hvelplund): electron scattering, charge transfer in storage ring (ESI) Mainz group (Herlert, Schweikhard): Multiply charged anion formation in a Penning trap Neumark/Woste/Meijer: IR of SO42-(H2O)n- Wiliams: MS and IR of SO42-(H2O)n- Dessent …… ESI is gaining popularity as a powerful ion source not just for analytical mass spectrometry, but also for physical chemistry and spectroscopy

  10. Photoelectron spectroscopy of singly and multiply-charged anions

  11. Difference between photodetachment of singly and multiply-charged anions

  12. Repulsive coulomb barrier (RCB) and negative electron binding energies

  13. The first PES of a doubly charged anion: Direct observation of the RCB Citrate 266 nm 355 nm Wang, Ding & Wang, Phys. Rev. Lett. 81, 3351 (1998)

  14. Intramolecular coulomb repulsion and RCB 266 nm 355 nm Wang, Ding, Wang & Nicholas, Phys. Rev. Lett. 81, 2667 (1998)

  15. Intramolecular coulomb repulsion and RCB rn O O C—–(CH2)n—–C Θ Θ O O r RCB = e2/r = 14.4/r (eV.Å) Wang, Ding, Wang & Nicholas Phys. Rev. Lett. 81, 2667 (1998) EB + RCB = constant = 3.2 eV ! = electron binding energy of R-CO2–

  16. Observation of negative electron binding energies: photoelectron spectra of [CuPc(SO3)4]4- and [CuPc(SO3)4H]3- X. B. Wang & L. S. Wang, Nature400, 245 (1999) Kappes et al., isomer-dependent life times: J. Phys. Chen. A107, 794 (2003)

  17. Solvation and solvent stabilization of multiply-charged anions •Isolated SO42- and PO43- Anions Do Not Exist • Boldyrev & Simons, J. Phys. Chem. 98, 2298 (1994) • SO42- ----> SO4- + e-, -1.6 eV • Blades & Kebarle, J. Am. Chem. Soc. 116, 10761 (1994) • ESI of Na2SO4 solution • Observed SO42-(H2O)n, n = 4-16 • Questions: • Minimum number of H2O needed to stabilize SO42- • How is SO42- solvated? • Inside or outside? • Solvation shell?

  18. ESI Mass Spectra of SO42-(H2O)n Blades & Kebarle J. Am. Chem. Soc. 116, 10761 (1994)

  19. PES of SO42–(H2O)n and solvent stabilization of SO42– VDE ADE

  20. Calculated structures of SO42-(H2O)n, n = 1-6

  21. PES of SO42-(H2O)n, n = 4-40 Large hydrated clusters: a single sulfate dianion in the center of a water droplet Wang, Yang, Nicholas & Wang Science294, 1322 (2001)

  22. Recent IR studies on SO42-(H2O)n J. Am. Chem. Soc. 129, 2220 (2007) Bush, Saykally & Williams IR for n = 6 at OH stretching at 130 K J. Chem. Phys. 125, 111102 (2006) Zhou, Santambrogio, Brummer, Moore, Woste, Meijer, Neumark & Asmis IR for n = 3-24 using FELIX at 17 K

  23. Isomers of SO42–(H2O)n Gao & Liu, J. Chem. Phys. 123, 224302 (2005) J. Am. Chem. Soc. 129, 2220 (2007) Bush, Saykally & Williams

  24. Dissociation of SO42–(H2O)n for n = 3-17 (BIRD) Wong & Williams J. Phys. Chem. A107, 10976 (2003) Two dissociation Channels:SO42–(H2O)n→ SO42–(H2O)n-k + kH2O (1)→ HSO4–(H2O)k + (H2O)mOH– (2)For n = 3, 4: (2) exclusivelyn = 5, 6: both (1) and (2), but for n = 5, (2) dominates, and for n = 6, (1) dominatesn≥ 7: (1) exclusively

  25. Size-dependent charge separation reactions of SO42–(H2O)n for n = 3-7 Gao & Liu, J. Chem. Phys. 123, 224302 (2005)

  26. Second generation ESI-PES apparatus at low-temperatures 5 m

  27. The low-temperature ion trap Cold Head 10 K Rotatable Ion entrance Ion exit

  28. Vibrationally-cold photoelectron spectrum of C60– Hot bands Wang, Woo & Wang, J. Chem. Phys. 123, 051106 (2005)

  29. Vibrationally resolved PES of cold C70- EA(C60) = 2.683 ± 0.008 eV EA(C70) = 2.765 ± 0.010 eV Chem. Phys. Lett. 233, 52 (1995) EA(C60) = 2.666 ± 0.001 eV EA(C70) = 2.676 ± 0.001 eV Too low!!!

  30. Photoelectron spectroscopy of cold C702- C702- C702- C70- EA2(C70) = ADE(C702-) = 0.02 eV Wang, Woo, Huang, Kappes & Wang, Phys. Rev. Lett. 96, 143002 (2006)

  31. Electron-electron repulsion in C702- e2/r = 1.8 to 2.0 eV EA1(C70) – EA2(C70) = 2.765 – 0. 02 = 2.745 eV Wang, Woo, Huang, Kappes & Wang, Phys. Rev. Lett. 96, 143002 (2006)

  32. Acknowledgments Dr. Xue-Bin Wang Dr. Jie Yang Dr. Chuan-Fan Ding (Fudan U.) Dr. Xin Yang (Fudan U.) Dr. You-Jun Fu (U. Kentucky) Dr. Hin-Koon Woo (Scripps) Dr. Tom Waters (U. Melbourne) Supported by: DOE, NSF & Guggenheim Foundation Collaboration: J. B. Nicholas (theo) M. M. Kappes (fullerenes)

More Related