350 likes | 486 Views
Towards Determining the UV Behavior of Maximal Supergravity. Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati. 1201.5366, 1207.6666, 1210.7709 Based on work with: Zvi Bern, John Joseph Carrasco, Lance Dixon, Michael Douglas, Radu Roiban , Matt von Hippel.
E N D
Towards Determining the UV Behavior of Maximal Supergravity Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati 1201.5366, 1207.6666, 1210.7709 Based on work with: Zvi Bern, John Joseph Carrasco, Lance Dixon, Michael Douglas, RaduRoiban, Matt von Hippel
N=8 SG UFinite? SUGRA status in one slide • After 35 years of supergravity, we can only now make very precise statements about the D=4 ultraviolet structure. • No D=4 divergence of pure SG has been found to date. • Susy forbids 1,2 loop div., R2, R3c.t. incompatible with susy • Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti • With matter: 1-loop divergent‘t Hooft& Veltman • Naively susy allows 3-loop div. R4 • N=8 SG and N=4 SG 3-loop finite! • N=8 SG: no divergence before 7 loops • 7-loop div. in D=4 implies a 5-loop div. • in D=24/5 -- calculation in progress! H. Johansson, Frascati 2013
Gravity Symmetry? Why is it interesting ? • If N=8 SG is perturbatively finite, why is it interesting ? • It better be finite for a good reason! • Hidden new symmetry, for example • Understanding the mechanism might open a host of possibilities • Any indication of hidden structures yet? • Gravity is a double copy of gauge theories • Color-Kinematics: kinematics = Lie algebra • Constraints from E-M duality Kallosh,…. • Hidden superconformal N=4 SUGRA ? • Bern, Carrasco, HJ Ferrara, Kallosh, Van Proeyen H. Johansson, Frascati 2013
D=5 SYM (2,0) theory ? Gauge Theory Analogy • Gauge theory in D>4 have same problem as D=4 gravity • Non-renormalizable due to dimensionful coupling • However, D=5 SYM has a UV completion: (2,0) theory in D=6 • Is D=5 SYM perturbatively UV finite ? Douglas; Lambert et al. • If yes, how does it work ? • If no, what do we need to add ? • Solitons, KK modes ? Douglas; Lambert et al. • Understanding D=5 SYM might (or might not) • give clues to how to understand D=4 gravity. Henrik Johansson
Outline • Review UV status N=8 SUGRAand N=4 SYM • 4pt amplitudes and UV divergences • 3,4-loop N=8 SUGRA & N=4 SYM • 5-loop nonplanar SYM • 6-loop planar D=5 SYM • 5pt amplitudes and UV divergences • 1,2,3-loop N=8 SUGRA & N=4 SYM • Current 5-loop progress • Conclusion H. Johansson, Frascati 2013
UV properties N=8 SG In D=4 dimensions: • N =8 SG: conventional superspace power counting forbids L=1,2 • divergences Deser, Kay, Stelle; Howe and Lindström; Green, Schwarz, Brink; • Howe, Stelle; Marcus, Sagnotti • Three-loop divergence ruled out by calculation:Bern, Carrasco, Dixon, HJ, • Kosower, Roiban, (2007), Bern, Carrasco, Dixon, HJ, Roiban (2008) • L<7 loop divergences ruled out by counterterm analysis, using E7(7) symmetry and other methods, but a L=7 divergence is still possible • Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove, Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. In D>4 dimensions: Through four loops N =8 SG and N =4 SYM diverge in exactly the same dimension: Marcus and Sagnotti; Bern, Dixon, Dunbar, Perelstein, Rozowsky; Bern, Carrasco, Dixon, HJ, Kosower, Roiban H. Johansson, Frascati 2013
UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel calculations: Divergent Known bound for N= 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N= 8 ? Finite If N = 8 div. at L=7 L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, VanhoveKallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. H. Johansson, Frascati 2013
UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel calculations: 26/5 or 24/5 ? Divergent Known bound for N= 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N= 8 ? Finite If N = 8 div. at L=7 L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, VanhoveKallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. H. Johansson, Frascati 2013
N=8 Amplitude and Counter Term Structure divergence occurs in 4pt amplitude form (any dimension) Loop order Counter term D = 8 1 2 D = 7 3 D = 6 4 D = 5.5 ? 5 ? D = 24/5 ? If amplitude for L 4 has at least 8 derivatives then by dimensional analysis: no divergence before L = 7 ! H. Johansson, Frascati 2013
N=8 Amplitude and Counter Term Structure divergence occurs in 4pt amplitude form (any dimension) Loop order Counter term D = 8 1 2 D = 7 3 D = 6 4 D = 5.5 5 ? ? D = 26/5 ? If amplitude for L 5 has at least 10 derivatives then by dimensional analysis: no divergence before L = 8 ! H. Johansson, Frascati 2013
Earliest appearance of N= 8 Divergence H. Johansson, Frascati 2013
3, 4, 5, 6-Loop Amplitudes H. Johansson, Frascati 2013
3-loop N=8 SG & N=4 SYM Color-kinematics dual form: Bern, Carrasco, HJ UV divergent in D=6: Bern, Carrasco, Dixon, HJ, Roiban
4-loops N =4 SYM and N =8 SG Bern, Carrasco, Dixon, HJ, Roiban1201.5366 • 85 diagrams • Power counting manifest both N =4 and N =8 • Both diverge in D=11/2 up to overall factor,divergence same as for N=4 SYM part H. Johansson, QMUL 2013
N=4 SYM 5-loop Amplitude N=4 SYM important stepping stone to N=8 SG 1207.6666 [hep-th] Bern, Carrasco, HJ, Roiban • 416 integral topologies: • Used maximal cut method • Bern, Carrasco, HJ, Kosower • Maximal cuts: 410 • Next-to-MC: 2473 • N2MC: 7917 • N3MC: 15156 Unitarity cuts done in D dimensions...integrated UV div. in D=26/5 H. Johansson, Frascati 2013
N=4 SYM 5-loop UV divergence Non-Planar UV divergence in D=26/5: Vanish! Double traces and single-trace NNLC finite in D=26/5, only single-trace LC and NLC are divergent Bern, Carrasco, HJ, Roiban H. Johansson, Frascati 2013
Testing D=5 intercept Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel calculations: Known bound for N= 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N= 8 If N = 8 div. at L=7 L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, VanhoveKallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. H. Johansson, Frascati 2013
6-Loop Planar D=5 SYM Bern, Carrasco, Dixon, Douglas, HJ, von Hippel • 68 planar diagrams • Given by dual conformal invariance (up to integer 0,1,-1,2,-2... prefactors) • Independently constructed by: Eden, Heslop, Korchemsky, Sokatchev; • Bourjaily, DiRe, Shaikh, Spradlin, Volovich H. Johansson, Frascati 2013
6-Loop Planar D=5 SYM The Parking Spot Escalation our secret collaborator…
6-Loop D=5 SYM divergence Bern, Carrasco, Dixon, Douglas, HJ, von Hippel • Using integration by parts identities, div. simplifies to 3 integrals • Numerical integration – modified version of FIESTA • 1000 node cluster at Stony Brook • Result: divergence is nonzero. • What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al.
Divergence to all loop orders ? Bern, Carrasco, Dixon, Douglas, HJ, von Hippel Intriguing pattern of UV divergence in critical dimension of maximal susy YM • Accurate to <1% • Why do the UV divergences • follow this approximate curve? • Is it asymptotically exact ?
5pt N=8 SUGRA calculations H. Johansson, Frascati 2013
2 2 3 3 1 1 4 4 C-K amplitudes at 1loop Duality-satisfying loop amplitudes: Green, Schwarz, Brink (1982) N=4 SYM: All-plus QCD: N=4 SYM and All-plus QCD: 1106.4711 [hep-th] Carrasco, HJ H. Johansson, Frascati 2013
1-loop 5-pts UV divergences Carrasco, HJ 1106.4711 [hep-th] SYM UV div in D=8: SG UV div in D=8: SU(8) violating SG UV div in D=8: counterterms:
2-loop 5-pts N =4 SYM and N =8 SG Carrasco, HJ 1106.4711 [hep-th] The 2-loop 5-point amplitude with Color-Kin. duality N = 8 SG obtained from numerator double copies H. Johansson, Frascati 2013
2-loop 5-pts UV divergences Carrasco, HJ 1106.4711 [hep-th] SYM UV div in D=7: SG UV div in D=7: SU(8) violating SG UV div in D=8:
3-loop 5-point SYM and N =8 SG Non-planar D-dimensional amplitude with manifest color-kinematics duality Carrasco, HJ (to appear) (“ladder-like” diagrams) (N = 8 SG obtained from squaring the numerators) H. Johansson, Frascati 2013
3-loop 5-point SYM and N =8 SG some “Mercedes-like” diagrams… Carrasco, HJ (to appear) H. Johansson, Frascati 2013
3-loop 5-point SYM and N =8 SG Carrasco, HJ (to appear) …in total 42 diagrams. For SYM the UV divergent diagrams (in D=6) are very simple: (for SG the UV div. comes from the other diagrams as well) H. Johansson, Frascati 2013
3-loop 5-pts UV divergences H. Johansson, Frascati 2013
N=8 SG 5-loop Status Bern, Carrasco, HJ, Roiban (in progress) Working on reorganizing 5-loop N=4 SYM • 416 + 336 = 752 integral topologies • BCJ: 2500 functional Jacobi eqns Relaxing ansatz: • Non-manifest crossing symmetry • Allow for non-local numerators • Gauge variant numerators • Relax power counting • Allow for triangle diagrams • … Once we have integrand, integration will take ~ 1 day: • No subdivergences in D=24/5 • No IR divergences since D>4, and absence of bubbles • No more difficult than IBP:s for N=4 SYM < 1 day • If needed, numerical integration ~ few days
Fortune-telling from pattern 5 loops, D=26/5: SYM SG ? 4 loops, D=11/2: SYM SG 3 loops, D=6: SYM SG related to diagrams in the quartic Casimir H. Johansson, Frascati 2013
Summary • Explicit calculations in N = 8 SUGRA up to four loops show that the power counting exactly follows that of N = 4 SYM -- a finite theory • 5 loop calculation in D=24/5 probes the potential 7-loop D=4 counterterm -- will provide critical input to the N = 8 question ! • D=5 SYM have a 6-loop UV divergence, showing that the standard perturbative expansion misses some of the (2,0) theory contributions. • Color-Kinematics duality allows for gravity calculations for multiloop multipoint amplitudes -- greatly facilitating UV analysis in gravity. • Numbers in UV divergences of N=8 SUGRA and N=4 SYM coincide, suggesting a deeper connection between the theories • Stay tuned for the 5-loop SUGRA result…