280 likes | 381 Views
Biol ógiai diverzitás M etagenom analizis. Biodiverzitás. Bár a mikrobák központi szerepet játszanak a biotikus folyamatokban, nagyon keveset tudunk valós sokféleségükről Mikrobiális diverzitás, katabolikus gének Szaporítható/nem szaporítható mikroorganizmusok Környezeti metagenom könyvtár.
E N D
Biodiverzitás • Bár a mikrobák központi szerepet játszanak a biotikus folyamatokban, nagyon keveset tudunk valós sokféleségükről • Mikrobiális diverzitás, katabolikus gének • Szaporítható/nem szaporítható mikroorganizmusok • Környezeti metagenom könyvtár
A mikroszkópikusan detektálható fajokból a szaporíthatók aránya élőhely % szaporítható A Földön előforduló fajok becsült száma Jelenleg kb 5000 prokarióta fajt ismerünk, de a becsült számuk több, mint 1 000 000! A molekuláris technikák fejlődésével új lehetőségek A laborban nem szaporítható prokarióták genetikai és biotechnológiai jelentősége hatalmas A Földön előforduló fajok becsült száma Ismert, leírt fajok száma (x1000) becsült fajok száma (x1000) % ismert fajok
Miért fontos, hogy megismerjük a lehető legtöbb mikróba fajt? • Alapvető szerepet játszottak a bioszféra kialakulásában • Meglepően nagy fiziológiai, biokémiai változatosságot mutatnak • Képesek extrém körülmények között élni • Tanulmányok arra világítanak rá, hogy a prokarióták száma jelentősen meghaladja az eukarióta sejtszámot, sőt egyes becslések szerint a prokarióta összbiomassza is meghaladja az eukarióta összbiomassza tömegét • A fentiek ellenére kevés ismerettel rendelkezünk, mivel az össz prokarióta féleségnek csak kis %-át tudjuk laboratóriumi körülmények között szaporítani, így érthetően nem is lehet elegendő információt szerezni a fajok többségéről • A különböző élőhelyek mikrobiális sokféleségét akkor tudjuk analizálni, ha a teljes genetikai anyagot kinyerjük a vizsgálandó élőhelyről gyűjtött mintából (metagenom)
Metagenomika • A genomika egy szervezet teljes genetikai állományát határozza meg, a metagenomika pedig egy adott (mikro-) környezetben élő közösség teljes genetikai anyagát • Hagyományosan laborban szaporított, tiszta kultúrákat vizsg, viszont sok mikroorganizmus nem szaporítható, ami gátat szab a megismerésnek. A metagenomika a közösség összetételén túl a funkcionális (metabolikus) potenciáljára is szolgáltat információt • A legvizsgáltabb/legkedveltebb a tengeri környezet. Emellett a talaj metagenom a legfontosabb diverzitás szempontjából
Talaj metagenom • A talaj nagyon összetett élőhely • A mikrobiális heterogenitás a talajban felülmúl minden más környezetet: kimutatták, hogy 1 g talaj több ezer faj akár 10 milliárd egyedét is tartalmazhatja! • A mikrokörnyezet jelentősen befolyásolja a sejtek szaporodását, aktivitását, így két egészen közeli mikrokörnyezet is nagyon eltérhet egymástól. Ez a heterogenitás eredményezi a mikrobiális élőhelyek nagy változatosságát és a mikrobák sokféleségét • Jogos tehát a várakozás, hogy a talaj metagenom genetikai sokfélesége még tartogat meglepetéseket, és gazdag forrása lehet ipari jelentőségű enzimek, bioaktív anyagok felfedezésének
DNS kinyerése a környezeti mintából • Molekuláris ökológiai tanulmányok szerint a standard kultivációs technikákkal a mikrobiális diverzitás max 1%-a nyerhető vissza, noha pl. talajban akár több, mint 10 000 különböző faj is jelen lehet (Komoly problémát jelent, hogy az in situ megfigyelhető mikróba sokféleség, és a szaporító tápon in vitro számolható telepszámok (számlálási anomáliák) között eltérés mutatkozik) • Pace és mtsai úttörő szerepet játszottak a metagenom extrakciója környezeti mintából kifejlesztésében. (Az extrahált DNS egyveleget részlegesen emésztették, a fragmenteket l vektorba ligálták, E.coli-ba klónozták, és az rRNS-ket kódoló géneket vizsg, mely segíts-vel nem–szaporítható egyedek létezéséről is nyerünk információt) • A talaj a legjobb környezet a mikrobiális sokféleség vizsgálatára, de komoly hátránya, hogy a DNS kinyerése során huminsavak is extrahálódnak, melyek gátolják a molekuláris munkákat
DNS kinyerése a környezeti mintából • A DNS kinyerésére mátrix gazdag (talaj, üledék) környezeti mintából kétféle extrakciós módszert dolgoztak ki: • A sejtek direkt lizise, és ezáltal a DNS közvetlen kinyerése - a környezeti mintától nem választjuk el a sejteket. Sok DNS-t nyerünk, egyszerű extrakciós eljárás • Indirekt módszer: először elválasztjuk a környező anyagoktól a sejteket, és utána extaháljuk a DNS-t a tisztított (utána akár laborban felszaporított) sejteketből - tiszta, nagyon jó integritású DNS • Attól függően, hogy mi a célunk használhatjuk a két módszer egyikét, pl. egy egyedi enzimet kódoló gén kinyeréséhez alkalmazható az első megoldás, míg multifunkciós enzimeket kódoló géncsoportok izolálásához célszerű a második módszert használni
bioszféra Mikrobiális diverzitás Metagenom izoláció izoláció Szaporítás Karakterizáció fermentáció Vektorba ligálás Enzim karakterizáció Transzformáció gazdasejtbe DNS izoláció Vektorba ligálás Transzformáció gazdasejtbe Rekombináns enzimek
Indirekt módszer (közvetett) először elválasztjuk a környezeti minta anyagaitól a sejteket (ezután gyakran felszaporítjuk), és utána extraháljuk a DNS-t a jelenlévő mikróbáknak csak egy részét lehet szelektálni és szaporítani tiszta kultúrában. A szaporítható mikroorg-k jellemezhetők, fermentálhatók Tiszta, nagyon jó integritású DNS nyerhető Olyan talajminták esetén előnyös, ahol nagy mennyiségű olyan anyagot találunk, amelyek zavarják a DNS izolációt (pl. huminsavak) Nagyobb DNS fragmentek,nagy-inszert könyvtár készítésére alkalmas Közvetlen lizis Az adott környezet összes mikroorg-nak teljes genomját izoláljuk és klónozzuk egy gazdába (pl. E. coli) a további vizsgálatokhoz A sejteket nem választjuk el a környezeti mintából, lízisüket a DNS tisztítása követi A sejtek lizisére magas hőmér-sékletet, erős detergenseket, mechanikai törést vagy fagyasztás-olvasztás módszert alkalmazhatunk Jobban reprezentálja a minta valós mikrobiális sokféleségét Leggyakrabban ezt használják, mivel sokféle talajra alkalmaz-ható, kevésbé laborigényes, több DNS nyerhető Hátránya: kisebb DNS fragmentek keletkeznek DNS extrakciós módszerek összehasonlítása
DNS kinyerése a környezeti mintából • A genetikai anyag önmagában nem elegendő a mikrobiális környezet megismeréséhez, minket elsősorban az érdekel, hogy • mit tudnak • milyen fontos tulajdonságot hordoznak számunkra és a környezet számára • milyen funkcionális fehérjéik, egyéb molekuláik vannak • ezen tulajdonságokhoz, fehérjékhez, egyéb sejt által termelt anyagokhoz hogyan juthatunk hozzá
Metagenom analizis • Az a felismerés, hogy a környezetben élő mikroorganizmusok többsége nem szaporítható standard módszerekkel, ösztönzőleg hatott a metagenomika fejlődésére, melyet úgy definiálhatunk, hogy a mikroorganizmusok szaporítása nélküli genom analizis • Két típusa: • Funkció alapú analizis – a kifejeződő tulajdonságokat keressük, vizsgáljuk • Szekvencia alapú analizis – a könyvtárat egyedi szekvenciák keresésével hozzák létre
Genomi DNS extrakció környezeti mintából Hasított vektor Genomi DNS-ek Vektorba ligált DNS transzformáció E. coli sejtekbe A DNS-t hordozó vektor a ligálás után Funkció-alapú analízis Szekvencia alapú analízis Metagenom analízis
Metagenom analizis • Amikor egy környezeti mintából kifejezetten egy bizonyos funkciót szeretnénk megtalálni, egy bizonyos enzim aktivitását kimutatni, nyomon követni több megközelítés lehetséges: • Bróm jelölt uracil használata, mely a metabolikusan aktív sejtek RNS-eibe épül be • Izotóp jelölt szubsztrátot alkalmazunk, mely a metabolikusan aktív sejtek szervesanyagaiban jelenik meg • A környezeti mintából kinyert DNS szakaszokat vektorba építve, pl. E. coli sejteket használva, azok a sejtek tudnak szaporodni, melyek a szubsztrát bontásáért felelős géneket/ tulajdonságokat hordozzák • Számos egyéb lehetőség is létezik
Specifikus (egy bizonyos funkcióért felelős!) DNS szakaszok dúsítása környezeti mintából
Transzkripció/transzláció (előző ábra a, és b, példájához)
Mikroorganizmusok és lebontási útvonalak tervezése hatékonyabb biodegradáció elérése céljából
Miért keresünk új megoldásokat? • Mindamellett, hogy számos természetesen előforduló mikroorg-al találkozunk, melyek képesek a xenobiotikus komponenseket bontani, vannak korlátai is e folyamatoknak: • Nincs olyan egyedi mikroba, mely képes minden szerves hulladékot bontani • Nagy konc-ban a szennyezőa gátolhatja a szaporodást és/vagy metabolikus aktivitást • Összetett szennyezések esetén, noha több komponenst képes bontani egy mikroba, van egy, mely gátolja aktivitását • Nem poláris komponensek szorbeálódnak a talaj-, üledék részecskéihez, kevésbé hozzáférhetővé válnak • Gyakran lassú a biodegradáció • Lehetőség pl plazmid transzfer, gén módosítás segítségével jobb metabolikus tulajdonságokkal bíró törzsek létrehozása
Plazmid transzfer • Kromoszóma • plazmid Description : This image is a line drawing of bacterial conjugation. The image shows, going from the top to the bottom, two bacteria before, during, and after conjugation. On the top then are two bacterium, before conjugation, each with their own chromosomal DNA. Only one bacterium shows a plasmid. In the middle, are the same two bacterium during conjugation. A pilius (connection) forms between the two bacteria and a linear copy of the plasmid is transported through the pilius to the other bacterium. On the bottom, are the same two bacterium after conjugation. The pilius is now gone and each bacterium has a plasmid.
Nem kompatibilis plazmidok Kompatibilis plazmidok Strain C’ Strain B’ 1970-es évek – Chakrabarty és mtsai A ‘szuperbaci’ jól szaporodik nyersolaj szubsztráton Strain C’’ Manipuláció plazmid transzfer segítségével Inkompatibilitás lehet a plazmidok között (azonos v hasonló replikációs origó gének), ekkor nem maradnak fenn egy sejtben együtt Egy szénhidrogén bontó baktérium törzset (strain C) használtak fel (szabadalom)
Manipuláció plazmid transzfer segítségével • Eleinte mezofil mikroorganizmusokkal végezték csak • Probléma: a környezetben sokkal általánosabb a 0-20°C (vizek, talaj) • Pszikrofilekbe (hideg kedvelők) kell az információkat (plazmid) juttatni, melyek az adott környezeti feltételeket jól tűrik
Manipuláció génmódosítással • Egyes folyamatokban a keletkező intermedierek gátolhatják a következő átalakítási lépéshez szükséges enzimek szintézisét, ezen lehet néha változtatni • Kometabolizmus esetén a bontandó anyag nem szubsztrátja a sejtnek, így nem indítja el a bontáshoz szükséges enzimek szintézisét, ezen szintén lehet módosítani
+ P promoter és xylS gén Pm promoter xyl gének Manipuláció génmódosítással • Pseudomonas putida törzs pWWO plazmidja xilol és toluol bontásáért felelős enzimeket kódoló géneket hordozó plazmid • xyl operon a Pm promoter szabályozása alatt áll, melyet a xylS gén terméke pozitívan szabályoz (ami önálló promoterrel rendelk) és a legtöbb szubsztrát (benzol szárm) aktiválja • A pWWO-t hordozó bakt át tudja alakítani a 4-etilbenzoátot (4EB) 4-etilkatekollá (4EC), de tovább nem, mert az inaktiválja a xylE gén termékét a katekol 2,3-dioxigenázt.A 4EB pedig nem aktiválja axylS fehérje term-t • Kérdés: hogyan lehet a 4EB-tinducerré (szubsztráttá) tenni, és elérni, hogy a 4EC negátolja a katekol 2,3-doxigenázt
példa Mutagenizálás után 4EB jelenlétében átírodott a xylS gén terméke Tetr: tetracyclin rezisztencia gén Ampr: ampicillin rezisztencia gén Kanr: kanamycin rezisztencia gén Mutagenizálták etil-metánszulfonáttal
A mutagenizált xylS gént egy széles gazdaspektrumú kanamycin rezisztens plazmidba építették, és a pWWO-t hordozó P.putida-ba juttatták A sejteket nagy mennyiségben 4EB szénforráson, kanamycin és etil-metánszulfonát jelenlétében inkubálták Csak azok a sejtek tudtak szaporodni, melyek esetében a keletk 4EC nem gátolta a katekol 2,3-dioxigenáz enzim aktivitását (ezekben a sejtekben az enzimet kódoló gén –xylE- mutálódott)
Manipuláció génmódosítással • TCE széles körben használt oldószer, gyakori talaj, talajvíz szennyező, perzisztens, potenciális karcinogén. Gyakran vinilkloriddá alakul anaerob talajbaktériumoknak köszönhetően • Ennek környezetbarát eltávolítására is célszerű jó megoldást keresni • Lehetséges jelölt: aromásokat bontó P. putida, mely képes a TCE-t is bontani. A felelős enzim a toluol dioxigenáz, melynek szintéziséért 4 gén felelős. • A 4 gént E. coli-ba vitték, megfelelő promoter rendszerben ezek kifejeződtek, és nem káros anyaggá alakították a TCE-t. Kezdeti hatékonysága elmaradt a P. putida-étól, de sokkal hosszabb ideig aktív maradt. A TCE-re – ellentétben a P. putida-val - nem érzékeny az E. coli • Ennek több verzióját is létrehozták P. putida-ban, bifenil dioxigenáz gént juttatak be, és az így létrehozott törzs ellenállóbb volt, sőt sokkal több szubsztrátot képes volt átalakítani
összefoglalás • Nagyon sokféle megoldás létezik, a plazmidok segítségével számtalan lehetőség áll rendelkezésünkre, hogy megváltoztassuk egy törzs képességeit • De vigyázni kell, hogy az új tulajdonságok bevitelével ne borítsuk fel a mikroba alapvető funkcióit • Két (esetleg több) alternatív lebontási útvonal is lehet aktív egy törzsben, de pl. egyszerre orto-hasítási és meta-hasítási (dioxigenázok) útvonal nem működőképes, hiszen összekutyulódik a folyamat, és használhatatlan köztitermékkel be is fejeződik a lebontás, és a sejtek elpusztulnak • Rezisztenciát hordozó törzseket nem lehet kijuttatni a természetbe!
Általánosan használt technikák a molekuláris mikrobiális ökológiában