420 likes | 539 Views
Energy loss and mean excitation energy within the shellwise local plasma approximation. Claudia Montanari, Darío Mitnik, Claudio Archubi and Jorge Miraglia. IAFE Instituto de Astronomía y Física del Espacio Buenos Aires, Argentina. Shellwise Local Plasma Approximation. General considerations
E N D
Energy loss and mean excitation energy within the shellwise local plasma approximation Claudia Montanari, Darío Mitnik, Claudio Archubi and Jorge Miraglia
IAFEInstituto de Astronomía y Física del EspacioBuenos Aires, Argentina
Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results
Inelastic processes Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results
e ZT e Zp Inelastic processes Target ionization Projetile, bare ion or with bound electrons Frozen (screening) or active (inelastic transitions, antiscreening)
Inelastic processes Colective description Free electron gas Dielectric formalism Input: densities and binding energies Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results Lindhard et al (1953, 67), Brandt-Lundqvist (1966, 1967, 1970), Bonderup (1967), Chu et al (1970, 1972)
Shellwise Local Plasma Approximation Independent shell approximation j=0 Cross sections 1 Stopping 2 Straggling
Dielectric function Lindhard (1954) e-e correlation to all orders ZP to first order Levine & Louie (1982), energy gap Enl , shell to shell response, satisfies f-sum rule
Hartree Fock for neutral atoms Atoms Miraglia et al Phys Rev A 81 042709 (2010) Dirac equation, Z>54 Grasp or Hullac codes W, Au 4f shell with 14 electrons Z 54 Complex systems Molecules Insulator surfaces Montanari et al, Phys Rev A 79 032903 (2009) In process García et al Phys Rev A 75 042904 (2007) Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results
Atomic densities in solids Al 14 Moruzzi et al, Calculated electronic properties of metals (1978) 12 Hartree-Fock, Bunge et al, Atomic Data and Nuclear Data Tables (1993) 10 8 4p r2d(r) 6 4 2 0.5 1 1.5 2 2.5 3 r
Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results
Perturbative ZP < ZT intermediate to high energies impact velocity v > ve Shellwise Local Plasma Approximation • General considerations • Atomic densities • Bethe limit • Validity range • Results
Stopping power • Energy loss straggling • Ionization cross sections Shellwise Local Plasma Approximation • General considerations • Bethe limit • Validity range • Atomic densities • Results
Stopping SLPA Mermin-Lindhard
Stopping Z=83 Z=82
Lindhard Scaling Lindhard and Scharff(1952) Bethe limit and mean excitation energy Stopping number L(v) High but not relativistic limit Mean excitation energies (in eV) for W, Au, Pb, and Bi Element Z I (SLPA) ICRU Report 49 W 74 710 727 +/-30 Au 79 814 790 +/-30 Pb 82 810 823 +/-30 Bi 83 840 823 +/-30 Bethe-Bloch I=k ZT k=10eV Montanari et al, Phys Rev A 80 012901 (2009)
Bethe limit and mean excitation energy Sigmund, NIMB 230,1 (2005)
2 MeV Bethe limit and mean excitation energy
Histop, no perturbative FEG Nestor Arista (CAB, Bariloche, Argentina) Moni Behar (Porto Alegre, UFRGS) and collaborators qi CASP code, Grande and Schiwietz Antiscreening (e-e interaction) Recent work CDW-EIS Zn0+C+i, less than 1% Ionization of both, projectile and target SLPA He in Zn, less than 1% Miraglia, 2010 Phys. Rev. A 73, 024901 2006 Stopping Heavier ions? • Perturbative limit • Charge states in solids • Projectile excitation/ionizarion
Stopping Antiscreening 1% Excitation and ionization due to e-e interaction
¥ é ù kv - 2 2 Z dk 1 r ò ò ò = w nl P CS d d r Im ê ú ( ( ) ) p e w d 2 v k k , , r , E ë û nl nl nl 0 0 e ZT e Zp Inelastic processes Ionization probabilities of the nl-shell
Ionization cross sections ECPSSR, Basbas, Brandt y Laubert (1973)
Ionization cross sections ECPSSR, Basbas, Brandt y Laubert (1973)
Ionization cross sections Miraglia et al Phys Rev A 78 052705 (2008); Phys Rev A 81 042709 (2010)
Ionization cross sections Miraglia et al Phys Rev A 78 052705 (2008); Phys Rev A 81 042709 (2010)
Concluding remarks SLPA • Ab-initio calculation (bound electrons) • Dielectric formalism, includes electronic correlation • Perturbative first order in ZP • Input just densities n(r) and binding energies • Fast calculation (PC), the same for 4f, 3d o 2p • Good results for stopping, straggling and ionization cross sections Future • Complex elements, molecules, clusters • Non perturbative calculation • Semilocal approximation P(b) multiple ionization • Screening among different FEG
Buenos Aires, Argentina Thank you!