190 likes | 289 Views
Is the pq -system isomorphic to addition of positive integers?. Is the pq -system equivalent to addition?. AXIOMS: x p - q x -. (Defines x + 1). RULE: IF x p y q z THEN x p y - q z -. ( IF x + y = z THEN x + y+ 1 = z+ 1).
E N D
Is the pq-system isomorphic to addition of positive integers? Is the pq-system equivalent to addition? AXIOMS: xp - q x - (Defines x + 1) RULE: IF xp y q z THEN xp y -q z - (IF x + y = z THEN x + y+1 = z+1) 1 2 3 4 xp - q x --p - q - -1 + 1 = 2 xp - q x -- -p - q -- -2 + 1 = 3 xp - q x -- - -p - q --- -3 + 1 = 4 xp - q x -- - - -p - q - --- -4 + 1 = 5 1 2 3 4 - p - - q - - -1 + 2 = 3 - - p - - q - - - - 2+2 = 4 - - - p - - q - - - - - 3+2 = 5 - - p - - - q - - - - - 2+ 3 = 5 - p - - - q - - - -1 + 3 = 4 - p - - - - q - - - - -1 + 4 = 5
Is the tq-system isomorphic to multiplication of positive integers? AXIOMS: xt - q x (Defines x ·1) RULE: IF xt y q z THEN xty -q zx (IF x · y = z THEN x ·(y+1) = z+x) pq-system IF xp y q z THEN xp y -q z -IF x + y = z THEN x + y+1 = z+1 -p - q - -1 + 1 = 2 - p - - q -- -1 + 2 = 3 - p - - - q - -- -1 + 3 = 4 - p - - - - q - - -- -1 + 4 = 5
Is the tq-system isomorphic to multiplication of positive integers? AXIOMS: xt - q x (Defines x ·1) RULE: IF xt y q z THEN xty -q zx (IF x · y = z THEN x ·(y+1) = z+x) pq-system IF xp y q z THEN xp y -q z -IF x + y = z THEN x + y+1 = z+1 tq-system IF xt y q z THEN xt y -q z xIF x · y = z THEN x · (y+1) = z+x -p - q - -1 + 1 = 2 -t - q -1 · 1 = 1 - p - - q -- -1 + 2 = 3 - t - - q -- 1 · 2 = 2 - p - - - q - -- -1 + 3 = 4 - t - - - q - - -1 · 3 = 3 - p - - - - q - - -- -1 + 4 = 5 - t - - - - q - - --1 · 4 = 4
New rule: Capturing compositeness RULE: IF x - t y - q z THEN C z IF (x+1) · (y+1) = z THEN z is composite Test: - - - - - - (6) is a composite, so C - - - - - -should be true z = ? - - - - - - x = - - - - - ? y = - - ? - - - - - t - - - q - - - - - - - - - t - - - - q - - - - - - Why not: IF x t y q z THEN C z IF x ·y= z THEN z is composite Test: x = - y = - z = ? - C - is true?
New rule: Capturing primes How did we get these primes?
New rule: Capturing primes Rule: IF x - t y - q z THEN C z Proposed Rule: IF C x is not a theoremTHEN P x Permitted typographical operations 1. Reading, recognizing symbols2. Writing down symbols3. Copying symbols4. Erasing symbols5. Comparing symbols, determining identity6. Remembering established theorems
(How do these operations work?) Permitted typographical operations 1. Reading, recognizing symbols2. Writing down symbols3. Copying symbols4. Erasing symbols5. Comparing symbols, determining identity6. Remembering established theorems Is - - t - - - q - - - - - - a theorem? Method 1: 2 times 3 = 6, so it IS a theorem Method 2: - - - - - - is the same as (- - -) and (- - -) Method 3: - - p - q - - Axiom(x t - q x x=- -) - - p - - - q - - - - Rule (x t y q z x p y - q z x) - - p - - - q - - - - - - Rule (x t y q z x p y - q z x)
- - - - - tq (Is the application of a rule permitted?) Permitted typographical operations 1. Reading, recognizing symbols2. Writing down symbols3. Copying symbols4. Erasing symbols5. Comparing symbols, determining identity6. Remembering established theorems - - - - - tq - - - - - - t - - q - - - - x y z - - M Rule Machine Write down contents of box M in box z Copy contents of box x to box M Write down - in box y
New rule: Capturing primes Rule: IF x - t y - q z THEN C z Proposed Rule: IF C z is not a theoremTHEN P z Permitted typographical operations 1. Reading, recognizing symbols2. Writing down symbols3. Copying symbols4. Erasing symbols5. Comparing symbols, determining identity6. Remembering established theorems Does the C zrule use only typographical operations? Does the P zrule use only typographical operations?
Figure and Ground Sky and Water, MC Escher
Figure and Ground (Fughetta by JS Bach)