400 likes | 481 Views
Query Compilation. Parsing Logical Query Plan. Source: our textbook, slides by Hector Garcia-Molina. SQL query. parse. parse tree. convert. answer. logical query plan. execute. apply laws. statistics. Pi. “improved” l.q.p. pick best. estimate result sizes.
E N D
Query Compilation Parsing Logical Query Plan Source: our textbook, slides by Hector Garcia-Molina
SQL query parse parse tree convert answer logical query plan execute apply laws statistics Pi “improved” l.q.p pick best estimate result sizes {(P1,C1),(P2,C2)...} l.q.p. +sizes estimate costs consider physical plans {P1,P2,…..}
Outline • Convert SQL query to a parse tree • Semantic checking: attributes, relation names, types • Convert to a logical query plan (relational algebra expression) • deal with subqueries • Improve the logical query plan • use algebraic transformations • group together certain operators • evaluate logical plan based on estimated size of relations • Convert to a physical query plan • search the space of physical plans • choose order of operations • complete the physical query plan
Parsing • Goal is to convert a text string containing a query into a parse tree data structure: • leaves form the text string (broken into lexical elements) • internal nodes are syntactic categories • Uses standard algorithmic techniques from compilers • given a grammar for the language (e.g., SQL), process the string and build the tree
Example: SQL query SELECT title FROM StarsIn WHERE starName IN ( SELECT name FROM MovieStar WHERE birthdate LIKE ‘%1960’ ); (Find the movies with stars born in 1960) Assume we have a simplified grammar for SQL.
SELECT <SelList> FROM <FromList> WHERE <Condition> <Attribute> <RelName> <Attribute> LIKE <Pattern> nameMovieStar birthDate‘%1960’ Example: Parse Tree <Query> <SFW> SELECT <SelList> FROM <FromList> WHERE <Condition> <Attribute> <RelName> <Tuple> IN <Query> titleStarsIn <Attribute> ( <Query> ) starName <SFW>
The Preprocessor • replaces each reference to a view with a parse (sub)-tree that describes the view (i.e., a query) • does semantic checking: • are relations and views mentioned in the schema? • are attributes mentioned in the current scope? • are attribute types correct?
Outline • Convert SQL query to a parse tree • Semantic checking: attributes, relation names, types • Convert to a logical query plan (relational algebra expression) • deal with subqueries • Improve the logical query plan • use algebraic transformations • group together certain operators • evaluate logical plan based on estimated size of relations • Convert to a physical query plan • search the space of physical plans • choose order of operations • complete the physical query plan
Convert Parse Tree to Relational Algebra • Complete algorithm depends on specific grammar, which determines forms of the parse trees • Here give a flavor of the approach
Conversion • Suppose there are no subqueries. • SELECT att-list FROM rel-list WHERE cond is converted into PROJatt-list(SELECTcond(PRODUCT(rel-list))), or att-list(cond( X (rel-list)))
<Query> <SFW> SELECT movieTitle FROM StarsIn, MovieStar WHERE starName = name AND birthdate LIKE '%1960'; SELECT <SelList> FROM <FromList> WHERE <Condition> <Attribute> <RelName> , <FromList> AND <Condition> movieTitleStarsIn <RelName> <Attribute> LIKE <Pattern> MovieStarbirthdate'%1960' <Condition> <Attribute> = <Attribute> starName name
Equivalent Algebraic Expression Tree movieTitle starname = name AND birthdate LIKE '%1960' X StarsIn MovieStar
Handling Subqueries • Recall the (equivalent) query: SELECT title FROM StarsIn WHERE starName IN ( SELECT name FROM MovieStar WHERE birthdate LIKE ‘%1960’ ); • Use an intermediate format called two-argument selection
Example: Two-Argument Selection title StarsIn <condition> <tuple> IN name <attribute> birthdate LIKE ‘%1960’ starName MovieStar
Converting Two-Argument Selection • To continue the conversion, we need rules for replacing two-argument selection with a relational algebra expression • Different rules depending on the nature of the subquery • Here show example for IN operator and uncorrelated query (subquery computes a relation independent of the tuple being tested)
Rules for IN C R <Condition> X R t IN S S C is the condition that equates attributes in t with corresponding attributes in S
Example: Logical Query Plan title starName=name StarsIn name birthdate LIKE ‘%1960’ MovieStar
What if Subquery is Correlated? • Example is when subquery refers to the current tuple of the outer scope that is being tested • More complicated to deal with, since subquery cannot be translated in isolation • Need to incorporate external attributes in the translation • Some details are in textbook
Outline • Convert SQL query to a parse tree • Semantic checking: attributes, relation names, types • Convert to a logical query plan (relational algebra expression) • deal with subqueries • Improve the logical query plan • use algebraic transformations • group together certain operators • evaluate logical plan based on estimated size of relations • Convert to a physical query plan • search the space of physical plans • choose order of operations • complete the physical query plan
Improving the Logical Query Plan • There are numerous algebraic laws concerning relational algebra operations • By applying them to a logical query plan judiciously, we can get an equivalent query plan that can be executed more efficiently • Next we'll survey some of these laws
Associative and Commutative Operations • product • natural join • set and bag union • set and bag intersection • associative: (A op B) op C = A op (B op C) • commutative: A op B = B op A
Laws Involving Selection • Selections usually reduce the size of the relation • Usually good to do selections early, i.e., "push them down the tree" • Also can be helpful to break up a complex selection into parts
Selection Splitting • C1 AND C2 (R) = C1 ( C2 (R)) • C1 OR C2 (R) = (C1 (R)) Uset (C2 (R)) if R is a set • C1 ( C2 (R)) = C2 ( C1 (R))
Selection and Binary Operators • Must push selection to both arguments: • C (R U S) = C (R) U C (S) • Must push to first arg, optional for 2nd: • C (R - S) = C (R) - S • C (R - S) = C (R) - C (S) • Push to at least one arg with all attributes mentioned in C: • product, natural join, theta join, intersection • e.g., C (R X S) = C (R) X S, if R has all the atts in C
Pushing Selection Up the Tree • Suppose we have relations • StarsIn(title,year,starName) • Movie(title,year,len,inColor,studioName) • and a view • CREATE VIEW MoviesOf1996 AS SELECT * FROM Movie WHERE year = 1996; • and the query • SELECT starName, studioName FROM MoviesOf1996 NATURAL JOIN StarsIn;
Remember the rule C(R S) = C(R) S ? The Straightforward Tree starName,studioName year=1996 StarsIn Movie
starName,studioName starName,studioName starName,studioName year=1996 year=1996 year=1996 year=1996 StarsIn StarsIn Movie StarsIn Movie push selection up tree push selection down tree Movie The Improved Logical Query Plan
Laws Involving Projections • Consider adding in additional projections • Adding a projection lower in the tree can improve performance, since often tuple size is reduced • Usually not as helpful as pushing selections down • If a projection is inserted in the tree, then none of the eliminated attributes can appear above this point in the tree • Ex: L(R X S) = L(M(R) X N(S)), where M (resp. N) is all attributes of R (resp. S) that are used in L • Another example: • L(R Ubag S) = L(R) UbagL(S) But watch out for set union!
Projection and Union • Example: Suppose • R(a,b) = {(1,2)}, • S(a,b) = {(1,3)}, and • bag projection • a(R Ubag S) = a({(1,2), (1,3)}) = {1, 1} = a({(1,2)} Ubaga({(1,3)}) =a(R) Ubaga(S) • a(R Uset S) = a({(1,2), (1,3)}) = {1, 1} ≠ {1} = {1} Uset {1} = a({(1,2)}) Useta({(1,3)}) =a(R) Useta(S)
Push Projection Below Selection? • Rule: L(C(R)) = L(C(M(R))) where M is all attributes used by L or C • But is it a good idea? SELECT starName FROM StarsIn WHERE movieYear = 1996; starName starName movieYear=1996 extra work to scan through StarsIn twice movieYear=1996 starName,movieYear StarsIn StarsIn
Joins and Products • Recall from the definitions of relational algebra: • R C S = C(R X S) (theta join) • R S = L(C(R X S)) (natural join) where C equates same-name attributes in R and S, and L includes all attributes of R and S dropping duplicates • To improve a logical query plan, replace a product followed by a selection with a join • Join algorithms are usually faster than doing product followed by selection (on large result of the product)
Duplicate Elimination • Moving down the tree is potentially beneficial as it can reduce the size of intermediate relations • Can be eliminated if argument has no duplicates • a relation with a primary key • a relation resulting from a grouping operator • Legal to push through product, join, selection, and bag intersection • Ex: (R X S) = (R) X (S) • Cannot push through bag union, bag difference or projection
Duplicate Elimination Pitfalls • Example: Suppose • R has two copies of tuple t • S has one copy of t • T contains only (1,2) and (1,3) • bag union: • (R Ubag S) has one copy of t • (R) Ubag(S) has two copies of t • bag difference: • (R S) has one copy of t • (R) (S) has no copies of t • bag projection: • ((T)) = {1} • ((T)) = {1,1}
Grouping and Aggregation • Since produces no duplicates: • (L(R)) = L(R) • Get rid of useless attributes: • L(R) = L(M(R)) where M contains all attributes in L • If L contains only MIN and MAX: • L(R) = L((R))
year,MAX(birthdate) name=starName X MovieStar StarsIn Example • Suppose we have the relations MovieStar(name,addr,gender,birthdate) StarsIn(title,year,starName) • and we want to find the youngest star to appear in a movie for each year: SELECT year, MAX(birthdate) FROM MovieStar,StarsIn WHERE name = starName GROUP BY year;
year,MAX(birthdate) year,birthdate year,MAX(birthdate) name=starName name=starName name=starName MovieStar StarsIn X MovieStar StarsIn MovieStar StarsIn Example cont'd year,MAX(birthdate) year,birthdate • birthdate, name • year, starName
Summary of LQP Improvements • Selections: • push down tree as far as possible • if condition is an AND, split and push separately • sometimes need to push up before pushing down • Projections: • can be pushed down • new ones can be added (but be careful) • Duplicate elimination: • sometimes can be removed • Selection/product combinations: • can sometimes be replaced with join
Outline • Convert SQL query to a parse tree • Semantic checking: attributes, relation names, types • Convert to a logical query plan (relational algebra expression) • deal with subqueries • Improve the logical query plan • use algebraic transformations • group together certain operators • evaluate logical plan based on estimated size of relations • Convert to a physical query plan • search the space of physical plans • choose order of operations • complete the physical query plan
Grouping Assoc/Comm Operators • Group together adjacent joins, adjacent unions, and adjacent intersections as siblings in the tree • Sets up the logical QP for future optimization when physical QP is constructed: determine best order for doing a sequence of joins (or unions or intersections) U D E F U D E F U A B C A B C
Evaluating Logical Query Plans • The transformations discussed so far intuitively seem like good ideas • But how can we evaluate them more scientifically? • Estimate size of relations, also helpful in evaluating physical query plans • Coming up next…