1.17k likes | 1.23k Views
Learn about electric hazards at oil and gas sites, fatal electrocution statistics, types of electrical injuries, hazard recognition, and safety standards compliance. Understand electrical shock, its effects on the body, and how to prevent incidents. Stay safe by following safe work practices, wearing PPE, and implementing lockout/tagout procedures.
E N D
Electrical Standards MODULE 10
Hazard Brainstorming • Where are electrical hazards on oil and gas well sites?
Statistics • Electrocution: Among most frequent causes of occupational injury death in US • 295 fatalities/year; 4309 lost time • 1992-2002: 9% decrease • Most frequent cause: Overhead power lines
Factors in Fatal Electrocutions • Safe work practices implemented and followed? • Adequate/required PPE provided and worn? • Lockout/tagout procedures implemented and followed? • OSHA, NEC, NESC compliance? • Worker and supervisor training adequate? • (from NIOSH)
Types of Electrical Injuries • Electrocution (death due to electrical shock) • Electrical shock • Burns (ugly pictures here) • Falls
Hazard Recognition • How can you sense electrical danger? • Cannot see, smell, taste, or hear danger • Can recognize unsafe conditions
Electrical Terminology • Current – movement of electrical charge • Resistance – opposition to current flow • Voltage – measure of electrical force • Conductors – substances with little resistance to electricity (such as metals) • Insulators – substances with high resistance to electricity (such as wood, rubber, glass, & bakelite) • Grounding – a conductive connection to the earth (which acts as a protective measure)
Electrical Shock • Received when current passes through body • Severity depends on: • Path of current through body • Amount of current flowing through body • Length of time body is in circuit • Also: voltage, moisture, heart cycle, health • Low voltage is NOT low hazard!
Dangers of Electrical Shock • Currents >75 mA* can cause ventricular fibrillation (rapid, ineffective heartbeat) • mA = milliampere = 1/1,000 of an ampere • Death within minutes unless a defibrillator is used • 75 mA is not much current (a small power drill uses 30 times as much)
Effects of Current on Body • 1 mA: Perception level, slight tingling. • 5 mA: Slight shock; not painful. • Can usually let go. • Involuntary reactions can cause injuries. • 6-30 mA: Painful shock • Muscular control lost • Freezing current or “let-go” range
Effects of Current on Body • 50-150 mA: Extreme pain • Respiratory arrest; cannot let go • Death possible • 1000-4300 mA: Ventricular fibrillation • Muscular contraction; nerve damage • Death likely • 10000 mA: Cardiac arrest • Severe burns, probable death
How Shock Happens • Connection between: • 2 wires of energized circuit • 1 wire of energized circuit and ground • Metallic part in contact with energized wire and ground
Inadequate Wiring Hazards Wire Gauge WIRE • What happens when a wire is too small to carry the current safely? • Overheating • Risk of fire or short circuit • Fuse acts as sacrificial weak link • Fuse too strong? Other parts of the system break first
29 CFR 1910 and 29 CFR 1926 • 1910 Subpart S = Electrical • Revised 2/14/2007; effective in 180 days • 1910 Subpart I = PPE • 1910.137 Electrical Protective Devices • 1926 Subpart K = Electrical • Protect against recognized hazards
Other Standards • NFPA 70E enacted to help meet CFR • Revised Subpart S based heavily on 2000 version • 2004 version now published • OSHA chose which provisions of 70E to adopt
29 CFR 1910 Subpart S • Electrical standards for general industry • § 302-308 and 399 updated: PM App. C • 5 main groups of standards: • Design safety standards § 302-330 • Safety-related work practices § 331-360 • Reserved: maintenance, special equipment • Definitions: § 399
1910.302 Electric utilization systems (PM Appendix C) • Applicability of regulations • By type of installation • By installation date
General 1903.303
1910.303 (a) Approval • Conductors and equipment acceptable only if approved • Note: If installation is made in accordance with NEC or ANSI/NFPA it will be deemed in compliance. • See definitions
1910.303(b) Examination, installation, and use of equipment • Examination – shall be free of recognized hazards • Suitability (check listing/labeling) • Other factors listed in regulation • Installation and use – by instructions • Insulation integrity • Interrupting rating (fuses, breakers)
1910.303(b) Examination, installation, and use of equipment • Circuit impedance… • Deteriorating agents – water, gases, excessive temperature, corrosives… • Mechanical execution of work • Close unused openings for protection • Conductors racked for safe access • Internal parts not contaminated • No damaged parts
1910.303(b) Examination, installation, and use of equipment • Mounting and cooling • Firmly secured • Air circulation; clearance • Ventilation openings not obstructed
1910.303(c) Electrical connections • General – dissimilar metals • Terminals – connections • Splices – correctly performed, insulated
1910.303(d) Arcing parts • Some electrical equipment normally produces arcs, sparks, flames, molten metal • Keep isolated from combustible material
1910.303(e) Marking • Manufacturer and ratings must be marked • Voltage, current, wattage, etc. • Durable markings in environment
1910.303(f) Disconnecting means and circuits • Legibly marked to indicate purpose • Unless purpose is evident • Durable • Able to be locked open • Series combination rating = special marking
Example of properly labeled electric service: motors, disconnects and breakers Subtitles & Transitions FOR EXAMPLE…
1910.303(g) 600 Volts, nominal, or less • Space about electric equipment • Space, not used for storage • Guarded when parts exposed • Entrances • Illumination • Headroom • Control boards in dedicated, protected space
1910.303(g) 600 Volts, nominal, or less • Guarding of live parts • Live parts 50 volts protected from people • Protection from damage • Warning signs for unqualified persons
1910.303(h) Over 600 volts, nominal • Enclosure / access control • Work space about equipment • Entrance and access to work space • Working space and guarding
Wiring Design and Protection 1903.304
1910.304(a) Use and identification of grounding conductors • Grounded & equipment grounding conductors identifiable & distinguishable • Grounded = white or gray • Equipment grounding = green, or green with yellow strips, or bare • Polarity may not be reversed • Grounding devices not used for other purposes
Polarity • Reversed polarity: Neutral (grounded) conductor connected to hot (ungrounded) terminal incorrectly • Most common on smaller branch circuits • 120 V receptacle outlets • Cord- and plug-connected equipment
Example of properly labeled electric service: motors, disconnects and breakers Subtitles & Transitions FOR EXAMPLE…
1910.304(b) Branch circuits • Identification of multiwire branch circuits • For >1 voltage system in a building • ID phase and system • Permanently posted at each panelboard
1910.304(b) Branch circuits • Receptacles and cord connectors • Grounding type for 15A & 20A circuits • Receptacles only on circuits matching voltage and current rating • Grounding contacts grounded • Except portable / vehicle-mounted generators • Except replacement receptacles • Grounding contact connected to equipment grounding conductor
1910.304(b) Branch circuits • Receptacles and cord connectors • Replacement of receptacles • Grounding-type where grounding means exists • GFCI where required • Options for lack of grounding means • Plugs not interchangeable for different voltage, frequency, type of current
1910.304(b) Branch circuits • Ground-fault circuit interrupter (GFCI) • Bathroom or rooftops • Temporary wiring: • Including extension cords • If unavailable for less-usual type of receptacle: assured equipment grounding conductor program.
1910.304(b) Branch circuits • Outlet devices • Heavy-duty lampholders for >20A • Receptacle outlets: • Receptacle ampere rating branch circuit • For 2 outlets on branch circuit: Table S-4
1910.304(b) Branch circuits • For 2 outlets on branch circuit: Table S-5 • 50 A: receptacle branch-circuit rating • Cord connections: Outlet where flexible cords with plugs used
1910.304(c) Outside conductors, 600 volts, nominal, or less • Clearance • Power conductors on poles • Clearance of open conductors from ground: • 10 feet – above sidewalk, grade, platform • 12 feet – vehicular traffic • 15 feet – truck traffic • 18 feet – public streets, alleys, driveways
1910.304(c) Outside conductors, 600 volts, nominal, or less • Clearance from building openings • No outer jacket: 3 foot clearance, except above window • Not beneath or obstructing openings where materials may be moved • Above roofs: 8 ft above, 3 ft from edge • Pedestrians? Platform • Exceptions for slope, attachment
1910.304(d) Location of outdoor lamps • Location of outdoor lamps • Under energized equipment unless • Equipment can be locked out or • Clearance/other safeguards adequate
1910.304(e) Services • Disconnecting means • Main switch disconnects all, indicates on/off • Services over 600 volts, nominal • Accessible only to qualified; warning signs
1910.304(f) Overcurrent protection • 600 volts, nominal, or less • Protect conductors and equipment • Overcurrent devices readily accessible • To employees & building management • Not exposed to damage or ignitable material • Located/shielded to avoid injury/burns • On/off position clearly indicated • Vertical: up = on • Special rules for over 600 volts
1910.304(g) Grounding • Systems to be grounded • 3-wire DC: neutral conductor • 2-wire DC, >50V-300V, with exceptions • AC <50V in certain cases • AC 50V-1000V (unless exempt) under 4 conditions • Exemptions for AC 50V-1000V
1910.304(g) Grounding • Conductor to be grounded • Portable and vehicle-mounted generators: frame as grounding electrode • Grounding connections • Grounding path: permanent, continuous, effective
Grounding • One conductor of the circuit intentionally grounded to earth • Protects circuit from lightning or other high voltage contact • Stabilizes the voltage in the system so “expected voltage levels” are not exceeded under normal conditions
Grounding • Metal frames / enclosures of equipment grounded by permanent connection or bond • Equipment grounding conductor provides path for dangerous fault current to return to ground • If damage, corrosion, loosening, etc. impairs continuity, shock and burn hazards will develop
Grounding Path • Shall have capacity to conduct safely any likely fault current. • Fault currents may be many times normal currents; can melt points of poor conductivity • High temperatures = hazard; can destroy ground-fault path