300 likes | 434 Views
An Instrument Concept Study for OWL Multi-Object, Multi-Field Ir Spectrograph. OWL-MOMFIS. Institutes: Laboratoire d’Astrophysique de Marseille (LAM) GEPI, Observatoire Paris-Meudon LESIA, Observatoire Paris-Meudon Centre de Recherche Astronomique de Lyon (CRAL) ONERA Main contributors:
E N D
An Instrument Concept Studyfor OWLMulti-Object, Multi-Field Ir Spectrograph OWL-MOMFIS MOMFIS
Institutes: • Laboratoire d’Astrophysique de Marseille (LAM) • GEPI, Observatoire Paris-Meudon • LESIA, Observatoire Paris-Meudon • Centre de Recherche Astronomique de Lyon (CRAL) • ONERA • Main contributors: • Eric Prieto (PM), J.-P. Kneib (science case), P.-E. Blanc, J.-G. Cuby (PI) (LAM) • F. Hammer, M. Marteaud, P. Vola, P. Jagourel (OPM) • Collaboration to continue on ELT-Design Study • ESO contact: M. Casali Collaborations MOMFIS
Science Case The ‘faint objects, near IR’ cosmology case… The End of the Dark Ages: First Light and Reionization (JWST SRD, E-ELT Opticon science case, TMT, GMT, SKA, etc.) • Nature of the first objects: popIII stars, BHs, AGNs,… • N(z), SFR(z), 〈Z〉(z), etc • How did they re-ionize the Universe ? • Mass Assembly of the galaxies Nick Gnedinhttp://casa.colorado.edu/~gnedin MOMFIS
Number counts z = 6 JWST Science Req. Document Dz = 1 MOMFIS
Complementarity with JWST OWL spectro 10ksec MOMFIS
Performance J =28-29, R=4000 MOMFIS
High level science specs MOMFIS
Concept steering mirror instrument DM Pick-off mirror • F/6 input beam • Spherical Pick-off mirrors • Active Toroidal steering mirrors: • z translation • Rot: x,y,z • Curvature radius adaptation • Feed to fixed optics: • DM • Slicers • Spectrographs MOMFIS
Conceptual Design WFS Beam steering mirror Slicer unit 3 spectrographs 1 cryostat ADC MOMFIS
Spectrograph • F/1.8 camera • Detector: 2kx2k, 18 mm pixels • 150 mm pupil MOMFIS
Cryostats • 900 Kg / cryostat • 190 LN2 l/day/unit • or 3-4 CCC f 760 mm Volume: 1,4m3 2300 mm f760 mm 1700 mm MOMFIS
Beam Steering Mirrors Optical surface (metallic) Piezo actuator blocked Displacement probes Piezo actuator activated FEA model Zemax Zernike polynomials Dz data file MOMFIS
Mechanics 4.5 m Cable wrap Safety brake • Bearing Ø 4.5 m. Feasible (ROLLIX). Cost estimate: 60 kEuros • Motor. Feasible (ARTUS) Need specific development : 50KEuros Cost between 50 & 75 kEuros • Encoder. (HEIDENHAIM) Std tape (10m) allows ~ 270° encoding. Rotator implementation: MOMFIS
Mechanics: FEA analysis Steering mirrors Corrector Carbon/epoxy Focal plate: carbon/epoxy + Iron Platform: steel Cryostats: stainless steel The mass of spectrograph composite structure is 3000 kg. At equivalent stiffness, the gain vs steel or Al is a factor 2 to 2.5. MOMFIS
Flexures • The order of magnitude of flexures (for any 60° rotation of telescope) is: 1°- Translations: 100 µm. 2°- Rotations: 50 µrad. • The first eigen frequency of this structure is 36 Hz. MOMFIS
Internal metrology instrument Dichroic Sensor DM Pick-off miroir • Artificial source at pick-off mirror level • Trough BSM and DM • Dichroic & WFS before instrument • Sensor: • WFE • Tip-Tilt • Defocus MOMFIS
Positioner (a la OzPoz) MOMFIS
Overall implementation MOMFIS
MOAO 200 x 200 100 x 100 50 x 50 • Constellation of 3 NGS • Encircled energy in 50 mas pixels • H band 100 x 100 14 ESO Simulations (Le Louarn et al.) 15 16 MOMFIS
MOAO Sky coverage ESO MOMFIS
Conclusions #1 • Conceptual design meets science specs • Improve design (e.g. positioner, starbugs, hexapods for BSM) • Reduce weight (currently factor ~2 above spec) • Design relies on existing technologies, no critical development items (but for AO) • R&D activities continue in Opticon / ELT DS FP6 programmes: steering mirrors, slicers, metrology, etc. • MOAO: • Further studies required to demonstrate concept, open loop operation, etc. • Rely on AO developments done elsewhere (DMs, WFS) • Phasing with OWL-AO development plan (GLAO, MCAO) MOMFIS
Conclusions #2 • Fallback operation: GLAO, MCAO on a smaller field • Phased implementation: • Start with GLAO • Continue with MCAO • Implement MOAO in a 2nd/3rd phase • Redundancy / modularity (e.g. one extra-cryostat) : maintainability • Growing telescope: ‘just’ a matter of pupil stops ? MOMFIS
Conclusions #3 • Development time: • ~ 4 yrs to PDR, including phase A & breadboarding • ~ 6 yrs from PDR to first light • Cost: • 30 – 40 M€ • 300 FTEs minimum • Requires multi-institute partnerships, large integration/testing facilities, etc. MOMFIS
Conclusion #4: Feedback to ESO/OWL • Big diameter helps the science case • Consider 60 being as overwhelming as 100 • Include MOAO & LGS in system analysis • Adapter/rotator (2 tons) not usable • Active and adaptive WFS gone, but instrument can provide alternative ones • Weight spec (17 tons) likely too strict • Handling & integration in focal station is a concern • Non gravity stable platform : can be dealt with but adds complexity to instrument (metrology & control) MOMFIS
Today state of the Art: Cluster lensesEllis et al 2001, Kneib et al 2004, Egami et al 2004 MOMFIS
Today state of the Art: spectroscopy 920 R I B V Det MOMFIS
High redshift galaxy size ~0.1” Bouwens et al 2004 MOMFIS