1 / 15

Unit 6 – Chapter 6

Unit 6 – Chapter 6. 6.1 – Discrete and Continuous Random Variables. Do you remember?. What is a probability distribution?. Example: Flipping Out!. Below is a probability distribution for flipping a coin four times and counting how many heads we see:

Download Presentation

Unit 6 – Chapter 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 6 – Chapter 6 6.1 – Discrete and Continuous Random Variables

  2. Do you remember? • What is a probability distribution?

  3. Example: Flipping Out! • Below is a probability distribution for flipping a coin four times and counting how many heads we see: • The number of heads we see is our Random Variable. In this problem we called it “X.” • Remember that a distribution shows what is possible and how often.

  4. Definitions • A random variable takes numerical values that describes the outcomes of some chance process. • The probability distribution of a random variable gives its possible values and their probabilities.

  5. Discrete Random Variable • A discrete random variable X takes a fixed set of possible values with gaps between. • For example: grades on the AP test • (1, 2, 3, 4 ,5)

  6. Dice, Dice Everywhere! • Come grab a die from me. • Roll the die 20+ times, recording your results as you go • Find the average and standard deviation for your die rolls • Record your mean and standard deviation • Share your mean and standard deivation them on the board

  7. Expected Value (Mean) • The mean of a discrete random variable X is also an average of the possible values of X. • To find the mean (expected value) of X, multiply each possible value by its probability then add all of the products. • Note:

  8. Example: A Blast from the Past • Below is the score distribution for AP tests waaaaay back in 1997: • So we “expect” to see a score of 3.022. • Notice that expected value should NOT be rounded. Remember, this is an average!

  9. Press your luck: • On an American roulette wheel there are 38 slots numbered 1 through 38. Slots are numbered 1-36 (half red half black) and two extra slots are labeled 0 or 00 and are green. If a player places a $1 bet on “red” the probability distribution for their net gain is as follows: • Find the expected value for net gain.

  10. Standard Deviation (and Variance) of a Discrete Random Variable • When you use the mean (expected value) you will also use the standard deviation. • ) • Standard Deviation is the square root of the variance. • Note:

  11. Example: A Blast from the Past… Again • Below is the score distribution for AP tests waaaaay back in 1997… for a second time:

  12. Press your luck… Again: • Using the same roulette example, find the standard deviation for net gain, when betting $1 on red:

  13. Continuous Random Variable • A continuous random variable, X, takes all values in an interval of numbers. The probability distribution of X is described by a density curve. The probability of any event is the area under the density curve and above the values of X that make up the event. • For example – heights of all people in this room

  14. You decide! Discrete or Continuous? • Time it takes you to clean your room • How much it costs for dinner • Inches of rainfall last month • Your birthday • The outcome of the roll of a dice

  15. Homework • P. 353: 2-8 even, 9, 12-18 even, 21-30

More Related