1 / 28

LAW OF SINES:

LAW OF SINES:. THE AMBIGUOUS CASE. AMBIGUOUS Open to various interpretations Having double meaning Difficult to classify, distinguish, or comprehend. RECALL: Opposite sides of angles of a triangle Interior Angles of a Triangle Theorem Triangle Inequality Theorem. RECALL:

tangia
Download Presentation

LAW OF SINES:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LAW OF SINES: THE AMBIGUOUS CASE

  2. AMBIGUOUS • Open to various interpretations • Having double meaning • Difficult to classify, distinguish, or comprehend

  3. RECALL: • Opposite sides of angles of a triangle • Interior Angles of a Triangle Theorem • Triangle Inequality Theorem

  4. RECALL: • Oblique Triangles • Triangles that do not have right angles • (acute or obtuse triangles)

  5. RECALL: • LAW OF SINE • – 1  sin  1

  6. RECALL: • Sine values of supplementary angles are equal. • Example: • Sin 80o = 0.9848 • Sin 100o = 0.9848

  7. Law of Sines: The Ambiguous Case Given: lengths of two sides and the angle opposite one of them (S-S-A)

  8. Possible Outcomes Case 1: If A is acute and a < b C a. If a < b sinA a C b a h = b sin A b B A h c A B c NO SOLUTION

  9. C a b B A c Possible Outcomes Case 1: If A is acute and a < b b. If a = b sinA C h = b sin A b = a h A c B 1 SOLUTION

  10. C b a h = b sin A B A c Possible Outcomes Case 1: If A is acute and a < b c. If a > b sinA C b a h a   180 -  A B B c 2 SOLUTIONS

  11. C b a h = b sin A B A c Possible Outcomes Case 2: If A is acute and a > b C b h a  A B 1 SOLUTION

  12. Possible Outcomes Case 3: If A is obtuse and a > b C a b A c B ONE SOLUTION

  13. Possible Outcomes Case 3: If A is obtuse and a ≤ b C a b A c B NO SOLUTION

  14. First, determine what case you have. (ASA, AAS, SSA, etc.) ASA, AAS SSA • Law of Sines • (“plug & chug”) • determine # of solutions • use the Law of Sines • to find them.

  15. For SSA Triangles: • If A < 90° • a < b 1. a < b(sin A) No Solution 2. a = b(sin A) 1 Solution • a > b(sin A) 2 Solution • a ≥ b 1 Solution • If A ≥ 90° • a ≤ b No Solution • a > b 1 Solution

  16. a>b mA > mB EXAMPLE 1 Given:ABC where a= 22 inches b = 12 inches mA = 42o SINGLE–SOLUTION CASE (acute) Find mB, mC, and c.

  17. sin A = sin B ab Sin B  0.36498 mB = 21.41o or 21o Sine values of supplementary angles are equal. The supplement of B is B2.  mB2=159o

  18. mC = 180o – (42o + 21o) mC = 117o sin A = sin Cac c= 29.29 inches SINGLE–SOLUTION CASE

  19. c < b EXAMPLE 2 Given:ABC where c= 15 inches b = 25 inches mC = 85o 15 < 25 sin 85o c ? b sin C NO SOLUTION CASE (acute) Find mB, mC, and c.

  20. sin A = sin B ab Sin B  1.66032 mB = ? Sin B > 1 NOT POSSIBLE ! Recall:– 1  sin  1 NO SOLUTION CASE

  21. b < a EXAMPLE 3 Given:ABC where b= 15.2 inches a = 20 inches mB = 110o NO SOLUTION CASE (obtuse) Find mB, mC, and c.

  22. sin A = sin B ab Sin B  1.23644 mB = ? Sin B > 1 NOT POSSIBLE ! Recall:– 1  sin  1 NO SOLUTION CASE

  23. a < b EXAMPLE 4 Given:ABC where a= 24 inches b = 36 inches mA = 25o a ? b sin A 24 > 36 sin 25o TWO – SOLUTION CASE (acute) Find mB, mC, and c.

  24. sin A = sin B ab Sin B  0.63393 mB = 39.34o or 39o The supplement of B is B2.  mB2 = 141o mC1 = 180o – (25o + 39o) mC1 = 116o mC2 = 180o – (25o+141o) mC2 = 14o

  25. sin A = sin Cac1 c1 = 51.04 inches sin A = sin Cac2 c = 13.74 inches

  26. EXAMPLE 3 Final Answers: mB1 = 39o mC1 = 116o c1 = 51.04 in. mB2 = 141o mC2 = 14o C2= 13.74 in. TWO – SOLUTION CASE

  27. CLASSWORK: (notebook) Find mB, mC, and c, if they exist.  1) a = 9.1, b = 12, mA = 35o  2) a = 25, b = 46, mA = 37o 3) a = 15, b = 10, mA = 66o

  28. Answers:  1)Case 1: mB=49o,mC=96o,c=15.78 Case 2: mB=131o,mC=14o,c=3.84 2)No possible solution. 3)mB=38o,mC=76o,c=15.93

More Related