480 likes | 641 Views
La modélisation de la demande de transport: méthodes avancées appliquées aux chaînes d’activités. Cinzia Cirillo Facultes Universitaires Notre Dame de la Paix – FUNDP Transportation Research Group – GRT Namur BELGIUM ccir@math.fundp.ac.be. The activity based approach.
E N D
La modélisation de la demande de transport:méthodes avancées appliquées aux chaînes d’activités. Cinzia Cirillo Facultes Universitaires Notre Dame de la Paix – FUNDP Transportation Research Group – GRT Namur BELGIUM ccir@math.fundp.ac.be FUNDP Namur 19 Avril 2004
The activity based approach The analysis of transport demand in Belgium (MOBEL) FUNDP Namur 19 Avril 2004
Modeling framework • The scheduling model system for workers Pattern, tour and stop models. • The Mode choice model Value of Time (VOT) study. • The destination choice model Combining temporal and spatial aspects in the mobility analysis. • Advanced models to measure travel behavior Mixed Logit & AMLET. FUNDP Namur 19 Avril 2004
An econometric simulator for daily activity travel patterns Aggregate Demographics (forecast year) Model parameters Medium-term Choice Simulator Synthetic Population Generator Individual & Household Demographics (forecast year) Individual Medium-term Decision (forecast year) Transportation system Characteristics (forecast year) Individual Activity-travel Patterns (forecast year) Activity-travel simulator Activity- Environment Characteristics (forecast year) Model parameters FUNDP Namur 19 Avril 2004
Daily pattern simulation for each individual of the household FUNDP Namur 19 Avril 2004
The scheduling model system FUNDP Namur 19 Avril 2004
Scheduling model system for workersPattern model system alternatives FUNDP Namur 19 Avril 2004
Scheduling model system for workersTour model system alternatives FUNDP Namur 19 Avril 2004
Scheduling model system for workersStop model system alternatives FUNDP Namur 19 Avril 2004
Mode choice model: Mobidrive data FUNDP Namur 19 Avril 2004
Mode choice model: variables FUNDP Namur 19 Avril 2004
Goodness of fit FUNDP Namur 19 Avril 2004
VOT: Value Of Time study Confidence interval (Armstrong et al., 2001) ( ) ( ) ( ) 2 2 2 2 2 2 2 r - - - - æ ö æ ö q - r q t t t t t t t t t t t t t c t c t c t c t c ç ÷ ç ÷ ( ) = ± V ç ÷ ç ÷ S , I q q 2 2 2 2 t t - - è ø è ø t t t t c t c t c c FUNDP Namur 19 Avril 2004
VOT by socio-economic characteristics FUNDP Namur 19 Avril 2004
VOT per tour tipe VOT distribution for non-workers per tour type VOT distribution for workers per tour type FUNDP Namur 19 Avril 2004
Travel time FUNDP Namur 19 Avril 2004
Travel cost FUNDP Namur 19 Avril 2004
VOT FUNDP Namur 19 Avril 2004
TT: BPA FUNDP Namur 19 Avril 2004
TT: Principal pattern NW FUNDP Namur 19 Avril 2004
TT: Evening pattern NW FUNDP Namur 19 Avril 2004
TT: commute pattern W FUNDP Namur 19 Avril 2004
TT: Evening pattern W FUNDP Namur 19 Avril 2004
Destination choice model. • Discrete choice methods to model out-of-home and out-of-work activity location choice • Alternative size: Statistical Sector • Sampling of alternatives : Action Space * (*) Dijst and Vidakovic (1997) FUNDP Namur 19 Avril 2004
Data • Data sources: MOBEL, the Belgian National Mobility Survey (1999) 1484 geocoded daily activity chains achieved in the Flemish Region 1950 out-of-home and out-of-work activities FUNDP Namur 19 Avril 2004
Alternatives generation process Action space theory FUNDP Namur 19 Avril 2004
Action Space Equation (*) where, • T : time-budget; • V : travel speed; • L : distance between bases (home-work); • τ: travel time ratio ; • x, y : coordinates of points belonging to the action-space. (*) Dijst and Vidakovic (1997) FUNDP Namur 19 Avril 2004
Worker’s daily activity chain • Morning commute • Midday tour • Evening commute • After tour • Non worker’s daily activity chain • Before tour • Main tour (main activity) • After tour FUNDP Namur 19 Avril 2004
Worker’s action spaces • Non worker’s action spaces S H W S S W S W H S S H 1 stop 2 stops 1 stop 2 stops ss H mas H s H s s 2 stops main activity (ma) + 2 stops 2 stops FUNDP Namur 19 Avril 2004
For each tour and commute, building an action space • For each observed stop, creating a set of max 19 alternatives: nine randomly selected destinations + actual destination chosen by the individual + the other destination chosen in the activity chain all in action space FUNDP Namur 19 Avril 2004
Group I: • Home • Work (workers) • Principal activity stop (non-workers) • Group II • Main stop in the morning tour • Main stop in the evening tour • Group III • 1 Secondary stop in the morning tour • 1 Secondary stop in the evening tour2 Secondary stops in principal tour FUNDP Namur 19 Avril 2004
Before main tour action space FUNDP Namur 19 Avril 2004
Morning commute action space FUNDP Namur 19 Avril 2004
Variables description FUNDP Namur 19 Avril 2004
LOS variables Impedance variables: • in-vehicle travel time; • cost; Impedance = IVTT +COST (VOT = value of time = 7 Euro/hour)* * Recent model developped for the Walloon Region FUNDP Namur 19 Avril 2004
Land use variables • Statistical sector area (total geographical area of the sector [m²]) ; • densely-built housing ; • built-up housing ; • housing and other developments ; • industrial / commercial / port area ; • agriculture and meadowland (agriculture and open space, meadowland and orchards). • green / nature area (broad-leaved, coniferous and/or mixed forests, municipal parks, heath land and moors, dunes and beaches, water); • infrastructure (highways, district roads, airport and/or railway infrastructure and so on); FUNDP Namur 19 Avril 2004
Activity variables • shopping variable; • financial variable (banks); • hotel / restaurant / café; • cinemas; • sport activities; • cultural, recreational and leisure activities (museum, library, school of music, zoo, nature reserve, theatres, casino and so on); • car retail; • personal service (beauty center and so on). FUNDP Namur 19 Avril 2004
Random utility • Utility function • yz : land use zone-specific variables, • λ: coefficients fixed across all zones; • : size measure of alternative z, • Mzk : kth size variable for zone z, • βk : corresponding coefficient, • μ: positive scale parameter; • xizj: exogenous accessibility variables for individual i in zone z , • γ: vector of random parameters; • εiz: error termsindependently and identically Gumbel distributed. FUNDP Namur 19 Avril 2004
Model results FUNDP Namur 19 Avril 2004
Estimation of mixed logit • Probability choice where, : normally distributed random vector; θ : means and standard deviation of ; Liz: logit formula. FUNDP Namur 19 Avril 2004
Maximizing the log-likelihood function • Monte-Carlo Simulation where R is the number of random draws δr, taken from the distribution function of δ. FUNDP Namur 19 Avril 2004
Computing θ as the solution of the simulated log-likelihood problem: FUNDP Namur 19 Avril 2004
Software to estimate mixed logit • Gauss (special routine written by K. Train) • Biogeme (M. Bierlaire) • Alogit (A. Daly) • LIMDEP (W. Greene) • AMLET (F. Bastin) FUNDP Namur 19 Avril 2004