1 / 25

Phenomenology of Twin Higgs Model

Phenomenology of Twin Higgs Model. Shufang Su • U. of Arizona. Hock-Seng Goh, Shufang Su Work in progress. Outline. -. Twin Higgs Model Twin Higgs mechanism Left-right Twin Higgs model New particles and model parameters Collider phenomenology Heavy top quark Heavy gauge bosons

tasha
Download Presentation

Phenomenology of Twin Higgs Model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phenomenology of Twin Higgs Model Shufang Su • U. of Arizona Hock-Seng Goh, Shufang Su Work in progress

  2. Outline - • Twin Higgs Model • Twin Higgs mechanism • Left-right Twin Higgs model • New particles and model parameters • Collider phenomenology • Heavy top quark • Heavy gauge bosons • Higgses

  3. Twin Higgs mechanism - Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative corrections • Little Higgs mechanism: collective symmetry breaking • Twin Higgs mechanism: discrete symmetry Mirror symmetry Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 Left-right symmetry Type II TH: Chacko, Goh, Harnik, hep-ph/0512088

  4. Left-right Twin Higgs model • SM Higgs doublet • EWSB SM neutral Higgs: H 3 eaten by heavy gauge bosons - • Global U(4) , with subgroup SU(2)L SU(2)R  U(1)B-L gauged • Left-right symmetry: gL=gR (yL=yR) A linear realization U(4) U(3) SU(2)L SU(2)R U(1)B-L  SU(2)LU(1)Y 7 GB

  5. Twin Higgs mechanism - Quadratic divergence forbidden by left-right symmetry gL=gR=g U(4) invariant, does not contribute to the mass of GB Non-linear realization Log contribution: mH g2f / (4 ), natural for f  TeV

  6. Left-right Twin Higgs model - Fermion sector: Top quark mass: Top quark mass eigenstates: SM top and tH EW precision constraints on SU(2)R gauge boson mass  f  2 TeV Introduce another Higgs field that only couples to gauge sector Which has a larger VEV

  7. Left-right Twin Higgs model • SM Higgs doublet • EWSB SM neutral Higgs: H SU(2)L Higgs doublet H1, H20 • U(4)  U(4), with gauged SU(2)LSU(2)RU(1)B-L + LR symmetry - Couple to gauge boson only 3 eaten by heavy gauge bosons Left 3 Higgses: neutral Higgs 0, charged Higgs  U(4)  U(3) SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y  U(4)  U(3) 7 GB 7 GB f2 f1

  8. New particles - • Heavy gauge bosons:WH, ZH m2WH,ZH g2(f12+f22) • Heavy top:tH m2TH M2+y2f12 • Other SU(2)R Higgses: m2  g4/(162)f22 log(/gf2) 0 m20  B (f2/f1) B: small, (50-100 GeV)2 • Other SU(2)L Higgs H1m2H1, H20  H20 : soft symmetry breaking, O(f1)

  9. Model parameters fixed by Higgs VEV - • Model parameters: f1, (f2, y), , M, B,  • Determine particle masses and interactions = 4f1 or 2f1 M=150 GeV B=50 GeV  = f1/2 fixed by top quark mass

  10. Heavy top tHproduction - • single heavy top production • heavy top pair production

  11. Heavy top tHdecay 3 b + 1 j + 1 lepton + missing ET j b W b  l t tH l b j 1 b + 1 j + 1 lepton + missing ET  W  tH b -

  12. Heavy gauge bosonproduction - • Drell-Yan process

  13. ZHdecay b 2 b + 2 j + 1 lepton + missing ET q t W q ZH b l t W  - • ZH

  14. WHdecay tHb: 4b + 1 lepton + missing ET tHbW : 2b + 1 lepton + missing ET tHtZ: 2b + 3 lepton + missing ET - • WH

  15. Higgses - SM Higgs • mH 150-170 GeV, depending on f1,  and M • Higgs searches: • gg  H  ZZ*  llll • gg  H  WW*  ll • WBF  qqH  qqWW*  qqll SU(2)R Higgs: 0,  0  bb j   tb 2b + 1 lepton + missing ET

  16. 0 4 b + 1 lepton + missing ET b b t l  W WH b 0  b - Neutral Higgs 0 • gg  0  bb, QCD background overwhelming • no W0, Z0 associated production (no such coupling) • bb0 , tb0,tt0cross section small • Produced via the decay of heavy particles

  17.  j b W b  l t tH 3 b + 1 j + 1 lepton + missing ET b  - Neutral Higgs  • no W, Z associated production (no such coupling) • bb , tb,ttcross section small • Produced via the decay of heavy particles

  18. H1, H20 - Higgs that couple to gauge boson only:H1, H20 • H1H20,H1H1, H20H20, associated production (small) • H20stable: missing energy • H1 H20 + soft jets/leptons if decay fast enough: appears as missing energy if decay slow: track ! H20: good dark matter candidates

  19. M=0 case   t + b (100%) - Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 tSM = (tL, TR), mt = yv Gauge coupling Yukawa coupling • 0 tH tH • 0 tt • 0 tH t • H t  t • H tH tH (small) • H tH t • W  t  b • W  tH b • WH t  b • WH tH b • Z  t  t • Z  tH tH • Z  tH t • ZH t  t • ZH tH tH • ZH tH t •  tH b •  tb X

  20.  decay 0  bb: bbqq final states huge QCD bg H ZZ*, WW* small signal - • No two body decay • Leading decay: 3 body off-shell

  21.  discovery Difficult unless   Hqq - small signal

  22. 0 discovery difficult absent - small signal

  23. Heavy top tHdiscovery 100% either huge QCD bg Or small signal absent - • single, pair production does not change much. • decay: only tH b  (100%)

  24. Heavy gauge bosondiscovery either huge QCD bg Or small signal absent - • ZH, WH drell-yan cross section does not change • ZH: ZH ll does not change much  Br(ZH t tH) =0 • WH: difficult For M=0 discovery of almost all the particle are difficult except for ZH

  25. Conclusions - • Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry • New particles • Heavy gauge boson: WH, ZH • Heavy top quark tH • New Higgses: 0, , H1, H20 (DM) • M0: rich collider phenomenology • M=0: difficult except for ZH • Future work • Pick certain channel for detailed study: background, cuts,… • Identify twin Higgs mechanism • Dark matter study • Comparison with other models, e.g., little higgs

More Related