470 likes | 700 Views
Renormalization of the Higgs Triplet Model. Kei Yagyu ( National Central U). S. Kanemura , KY, arXiv : 1201.6287 [ hep-ph ], accepted M. Aoki, S. Kanemura , M. Kikuchi. KY, arXiv : 1204.1951 [ hep-ph ]. National Taiwan University, 14 th May 2012. 1/35.
E N D
Renormalization of the Higgs Triplet Model Kei Yagyu (National Central U) S. Kanemura, KY, arXiv: 1201.6287 [hep-ph], accepted M. Aoki, S. Kanemura, M. Kikuchi. KY, arXiv: 1204.1951 [hep-ph] National Taiwan University, 14th May 2012 1/35
Phenomenology of the Higgs Triplet Model at the LHC Kei YAGYU(Univ. of Toyama) 柳生 慶 富山大学 M. Aoki, S. Kanemura, KY, arXiv: 1110.4625 [hep-ph] 2nd Jan. 2012 National Taiwan University 2/35
Plan of the talk • Introduction - The Higgs triplet model • Renormalization of the Higgs Triplet Model - Radiative corrections to the EW parameters - Radiative corrections to the Higgs potential • Phenomenology - Higgs →2 photon decay - LHC physics • Summary 3/35
Introduction ・The Higgs sector has not been confirmed. - Minimal? or Non-minimal? - The Higgs boson search is underway at the LHC. The Higgs boson mass is constrained to be 115 GeV < mh < 127 GeV or mh > 600 GeV at 95% CL. - There is a “SM-like” Higgs boson at around 125 GeV. ・ There are phenomena which cannot be explained in the SM. - Tiny neutrino masses, dark matter and Baryon asymmetry of the Universe ・ New physics may explain these phenomena above the TeV scale. 100 GeV TeVor 100 TeV or GUT scale or … Energy scale New physics model, where mν, DM, BAU are explained. SM TeV 100 GeV Energy scale SM with extended Higgs sectors, where mν, DM, BAU are explained. 4/35
Explanation by extended Higgs sectors • Tiny neutrino masses - The type II seesaw model - Radiative seesaw models (e.g. Zee model) • Dark matter - Higgs sector with an unbroken discrete symmetry • Baryon asymmetry of the Universe - Electroweak baryogenesis Introduced extended Higgs sectors SU(2) doublet Higgs + Singlet [U(1)B-L model] + Doublet [Inert doublet model] + Triplet [Type II seesaw model], etc… Studying extended Higgs sectors is important to understand the phenomena beyond the SM. 5/35
How we can constrain various Higgs sectors? An Extended Higgs Sector Affects Yukawa Interaction ・Flavor changing neutral current EW Parameters ・Rho parameter ・Gauge boson masses Higgs Potential ・Higgs boson mass ・Higgs selfcoupling Compare Experimental Data LEP, LHC, ILC, … It is necessary to prepare precise calculations ofobservables in order to compare the experimental data and to distinguish various Higgs sectors. 6/35
How we can constrain various Higgs sectors? An Extended Higgs Sector Affects Yukawa Interaction ・Flavor changing neutral current EW Parameters ・Rho parameter ・Gauge boson masses Higgs Potential ・Higgs boson mass ・Higgs selfcoupling Compare Experimental Data LEP, LHC, ILC, … In this talk, we focus on the Higgs Triplet Model (HTM) and its renormalization of electroweak parameters and the Higgs potential. 7/35
Cheng, Li(1980); Schechter, Valle, (1980); Magg, Wetterich, (1980); Mohapatra, Senjanovic, (1981). The Higgs Triplet Model The Higgs triplet field Δ is added to the SM. ・Important new interaction terms: Lepton number breaking parameter ・Neutrino mass matrix MΔ : Mass of triplet scalar boson. vΔ : VEV of the triplet Higgs When the lepton number breaking parameter μ is taken to be of O(eV) scale, we can take MΔ ~ O(100-1000) GeV. In this case, the HTM can be tested at colliders. 8/35
Important predictions (Tree-Level) 1. Rho parameter deviates from unity. Renormalization of the electroweak parameters 2. Characteristic relations among the masses of the Δ-like Higgs bosons are predicted. Renormalization of the Higgs potential Under vΔ << vΦ(Required byρexp ~ 1) Case I Case II ・Mass eigenstates: (SM-like) h, (Triplet-like) H±±, H±, H, A Mass2 Mass2 H++ A, H mH++2- mH+2≃ mH+2- mA2 H+ H+ mA2≃ mH2 H++ A, H These relations are useful to test the model. How these predictions are modified by the radiative corrections? 9/35
Strategy Renormalization of the EW parameters. We searchallowed parameter regions by the EW precision data. Renormalization of the Higgs potential By using the constrained parameter space, we calculate one-loop corrected predictions of observables in the Higgs potential (e.g., the mass spectrum, hhh coupling). Phenomenology at the LHC 10/35
The electroweak rho parameter ρexp ~ 1 ★ The experimental value of the rho parameter is quite close to unity. Tree-level expression for the rho parameter (Kinetic term of Higgs fields) ρtree≠ 1 ρtree= 1 ・ Standard Model ・ Models with Higgs fields whose isospin is larger than ½ e.g., the HTM. ・Multi-doublet (with singlets)model There is the custodial SU(2) sym. in the kinetic term The custodial SU(2) sym. is broken in the kinetic term. These sector affects the rho parameter by the loop effects. Higgs Potential Yukawa interaction 12/35
Custodial Symmetry The SM Lagrangian can be written by the 2×2 matrix form of the Higgs doublet: When we take g’ and yA→ 0, Lagrangian is invariant under SU(2)L×SU(2)R ★ Kinetic term , After the Higgs field gets the VEV: this symmetry is reduced to SU(2)L=SU(2)R =SU(2)V (custodial symmetry). ★ Higgs potential SU(2)V breaking by g’ is included in the definition of the rho parameter, while that by yA is not. There is a significant contribution to the deviation of rho = 1 from the top-bottom sector by the loop effect. ★ Yukawa interaction (top-bottom sector) 13/35
Models with ρ = 1 at the tree level There are 3 parameters: g, g’ and v in the kinetic term of Higgs fields. The electroweak observables are described by the 3 input parameters. We can choose αem, GFand mZ as the 3 input parameters. αem(mz) =128.903 ± 0.0015, GF = 1.16637 ± 0.00001 GeV-2, mz = 91.1876 ± 0.0021 GeV The weak angle sin2θW = sW2 and mW can be written in terms of the above 3 inputs. ~ δρ= ρ-1 = αem T The counter term of δsW2 is derived as The quantity δρ (or T) measures the violation of the custodial symmetry. 14/35
Scalar boson and fermion loop contributions to δρ The two Higgs doublet model case αem T = Custodial sym. breaking in the scalar sector Custodial sym. breaking in the top-bottom sector Dependence of the quadratic mass splitting among particles in the same isospinmultiplet appears in the T (rho) parameter. 500 GeV Peskin, Wells (2001); Grimus, Lavoura, Ogreid, Osland (2008); Kanemura, Okada, Taniguchi, Tsumura (2011). mh = 117 GeV mH+ = 300 GeV mA = 200 – 300 GeV 15/35
Models without ρ = 1 at the tree level There are 4 parameters (instead of 3 in the SM): g, g’, v and ρ0in the kinetic term of Higgs fields. This parameter causes ρtree≠ 1 at the tree level. Ex. the VEV of the triplet Higgs in the HTM. The electroweak observables are described by the 4 input parameters. ^ We can choose αem, GF, mZ and sW2as the input parameters. Blank, Hollik (1997) e ^ sW2 is defined by the effective Zee vertex: Z e ^ sW2=0.23146 ± 0.00012 In order to calculate the EW parameters at one-loop order, we shift the bare parameters and impose reno. conditions. 16/35
On-shell renormalization scheme ^ ^ ^ Parameters shift: g → g + δg, g’ → g’ + δg’, v → v + δv, sW2→ sW2+ δsW2, Wμ→ ZW1/2 Wμ , Bμ→ ZB1/2 Bμ 3-point function 2-point function = + IPIdiagram Counter term = + Counter term IPIdiagram On-shell renormalization conditions From these 5 conditions, 5 counter terms (δg, δg’, δv, δZWand δZB) are determined. 17/35
On-shell renormalization scheme ^ ^ ^ Parameters shift: g → g + δg, g’ → g’ + δg’, v → v + δv, sW2→ sW2+ δsW2, Wμ→ ZW1/2 Wμ , Bμ→ ZB1/2 Bμ 3-point function 2-point function = + IPIdiagram Counter term = + Counter term IPIdiagram On-shell renormalization conditions ^ How we can determine the counter term δ sW2? 18/35
Radiative corrections to ρ in models w/o ρ =1 at the tree level ^ sW2is anindependentparameter. → Additional renormalization condition is necessary. Blank, Hollik (1997) = 0 1PI diagram Counter term Model w/ ρtree=1 Model w/o ρtree=1 ^ By the renormalization of δsW2, quadraticdependence of mass splittingdisappear. Effect of the custodial symmetry breaking In models without ρ = 1 at the tree level, one-loop contribution to ρ dose not measure the violation of the custodial symmetry. 19/35
Radiative corrections to ρ in models w/o ρ =1 at the tree level ^ sW2is anindependentparameter. → Additional renormalization condition is necessary. Blank, Hollik (1997) = 0 1PI diagram Counter term Model w/ ρtree=1 Model w/o ρtree=1 ^ By the renormalization of δsW2, quadraticdependence of mass splittingdisappear. Effect of the custodial symmetry breaking We apply this renormalization scheme to the HTM. 19/35
Renormalized ρ and mWin model w/o ρtree =1 One-loop corrected ρ and mW are given by: , Y X = Renormalization conditions p + Vertex corrections and box diagram corrections 20/35
Kanemura, KY, arXiv: 1201.6287 [hep-ph] Prediction ofthe W boson mass at the 1-loop level mH++ = 150 GeV mH++ = 300 GeV Δm = mH++ - mH+ Case I Case II We fixed mh=125 GeV and mt=173 GeV. H++ A, H H+ H+ H++ A, H mA = 150 GeV mA = 300 GeV In Case I, by the effect of the mass splitting, there are allowed regions . Case II is highly constrained by the data. 21/35
One-loop corrected rho parameter in the HTM Kanemura, KY, arXiv: 1201.6287 [hep-ph] Case I Case II mH++ = 150 GeV, mh = 125 GeV mA= 150 GeV, mh = 125 GeV H++ A, H Δm= mH++ - mH+ vΔis calculated by the tree level formula: H+ H+ H++ A, H In Case I, mH++= 150 GeV, 100 GeV <|Δm| < 400 GeV, 3 GeV < vΔ < 8 GeVis favored, while Case II is highly constrained by the data. 22/35
Kanemura, KY, arXiv: 1201.6287 [hep-ph] Heavy mass limit ξ = mH++2 – mH+2 Case I Case II SM prediction When we take heavy mass limit, loop effects of the triplet-like scalar bosons disappear. Even in such a case, the prediction does not coincide with the SM prediction. 23/35
Decoupling property of the HTM HTM with L# (μ ≠0) ・ ρ ≠ 1 at the tree level (vΔ≠ 0) ・ 4 input parameters (αem, GF, mZ and sW2) HTM with L# (μ = 0) ・ρ =1 at the tree level (vΔ=0) ・ 3 input parameters (αem, GF and mZ ) with sW2 = 1-mW2/mZ2 Heavy Δ-like fields limit Heavy Δ-like fields limit SM ・ L# is conserved. ・ρ =1 at the tree level ・ 3 input parameters (αem, GF and mZ ) with sW2 = 1-mW2/mZ2 24/35
Higgs Potential Discovery of extra Higgs bosons; i.e., Charged Higgs bosons H±, … Non-minimal Higgs sectors Direct evidence ★Measuring the mass spectrum, decay branching ratios of these extra Higgs bosons. Deviation of (SM-like) Higgs couplings (hVV, hff, hhh) from those predicted values in the SM. Indirect signature ★ Once “SM-like” Higgs boson (h) is discovered, precise measurements for the Higgs mass and the triple Higgs coupling turns to be very important. Precise calculation of these physics quantities is very important to discriminate various Higgs sectors. 26/35
The Higgs potential in the HTM ・The most general form under the SU(2)×U(1) gauge sym. There are 10 degrees of freedom of scalar states. 10 scalar states can be translated to 3 NG bosons, 1 SM-like scalar boson and6 Δ-like scalar bosons. . 6 Δ-like scalar bosons→ H±±, H±, A and H Doubly-charged Singly-charged CP-odd CP-even 27/35
The Higgs potential in the HTM 8 physical parameters 5 physical parameters 8 parameters in the potential 5 parameters contribute to the masses ・The most general form under the SU(2)×U(1) gauge sym. μ , m , M , λ1 , λ2 , λ3 , λ4 , λ5 m , M , λ1 , λ4 , λ5 v , M , mh , + 2 triplet Higgs masses v , vΔ , mH++ , mH+ , mA , mH, mh, α If the U(1) lepton number sym. is approximately restored (μ → 0, vΔ→ 0), 2 of 4 triplet-like Higgs masses are not independent. → There must be 2 relations: mH++2- mH+2 =mH+2- mA2 = -v2λ5 /4 28/35
Renormalization of the Higgs potential Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951 8 physical parameters 8 parameters in the potential μ , m , M , λ1 , λ2 , λ3 , λ4 , λ5 v , vΔ , mH++ , mH+ , mA , mh , mH , α δv, δvΔ ,δmH++2 , δmH+2, δmA2, δmh2 , δmH2 , δα Counter terms Tadpole:δTφ,δTΔ , Wave function renormalization:δZH++, δZH+, δZA, δZH, δZh δv, δvΔ Renormalization of GF and sw2 ^ δTφ,δTΔ Vanishing 1-point function δmH++2 , δmH+2, δmA2, δmh2 , δmH2 δZH++, δZH+, δZA, δZH, δZh On-shell condition No-mixing condition δα where 2-point function is defined by 29/35
Radiative corrections to the mass spectrum Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951 Case I Ratio of the squared mass differenceR Tree level: Less than 10-3 Loop level: Loop correction (mA2)treeis determined by mH++2and mH+2 : In favored parameter sets by EW precision data:mH++ = O(100)GeV, |Δm|~100GeV, ΔR can be as large as O(10)%. 30/35
One-loop corrected hhh coupling Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951 On-shell renormalization of the hhh coupling: For α = 0 and vΔ2 << v2 Quartic mass dependence of Δ-like Higgs bosons appears to the hhh coupling ⇒ Non-decoupling property of the Higgs sector. Results for the renormalization of the EW parameter suggests mH++ = O(100)GeV, |Δm|~100GeV. In this set, deviation of hhh is predicted more than 25% Case I By measuring the mass spectrum as well as thehhhcoupling, the HTM can be tested. Unitarity is broken 31/35
Phenomenology 32/35
Kanemura, KY, arXiv: 1201.6287 [hep-ph] Higgs → two photon decay + SM contribution+ Triplet-like scalar loop contribution mH++ = 300 GeV, mh = 125 GeV mH++ = 150 GeV, mh = 125 GeV Case I A, H H+ H++ The decay rate of h → γγ is around half in the HTM compared with that in the SM. 33/35
Phenomenology at the LHC ★From the results of the renormalization of the EW parameters Favored scenario by the precision data: 1. Case I (mH++ > mH+ > mA, mH) 2. Δm (=mH++ - mH+ ) = O(100) GeV 3. mH++ < 300-400 GeV 4. vΔ = O(1) GeV ★From the results of the renormalization of the Higgs potential ΔR ~ - 10% → (mH++ 2 - mH+ 2)/(mH+ 2 – mA 2) ~ 0.9 ★Decays of triplet-like Higgs bosons (Multi-W boson event may be expected): H++→ W+W+ H+→ W-H++ H,A → W±H∓ → W±W±H ∓ ∓ C.-W. Chiang, T. Nomura, K. Tsumura (2012) → Studied multi-W signature assuming Δm = 0. M. Aoki, S. Kanemura, KY (2011) → Studied the pheno. of the HTM with Δm≠ 0. Cascade decay 34/35
Summary • Precise calculations of EW parameters as well as Higgs couplings (hhh, hVV, hff) are important to discriminate various Higgs sectors. • The important predictions in the Higgs Triplet Model: • Renormalization of the EW parameters - 4 input parameters (not 3 as the SM) are necessary in to describe the EW parameters. ⇒ mA > mH+ > mH++ with Δm=O(100) GeVis favored. • Renormalization of the Higgs potential - One-loop corrected mass spectrum: ΔR = O(10)% - One-loop corrected hhhcoupling : deviation from the SM prediction can be as large as O(100) % • The decay rate of h→γγ is half compared to that of the SM prediction. At the LHC, multi-W signatures can be expected. mH++2- mH+2≃ mH+2- mA2 35/35
Transverse mass distribution Ex.) Measurement for W boson massDefinition of the transverse mass ≃ Smith,Neerven,Vermaseren,PRL(1983)
Measurements of hhh coupling at colliders Baur, Plehn, Rainwater, PRL89 (2002) LHC gg→ hh→ W+W-W+W- → l+l+4j • mh< 140 GeV: It is difficult to detect the hhh • coupling at the LHC. Yasui, Kanemura, Kiyoura, Odagiri, Okada, Senaha, Yamashita, hep-ph/0211047 ILC e+e-→ hhνν e+e-→ Zhh It can be expected around 10-30% accuracy. Detector level simulation is underway. mh (GeV)
Mass reconstruction vΔ = 10-2 GeV qq’ → H+H → (l+νbb)(bb) qq → HA → (bb)(bb) qq’ → H++H-→ (l+l+ννbb)(jjbb) MT, Minv MT MT 130 fb 42 fb 33 fb 12 fb H++ 8.0 fb (14 TeV) 2.8 fb (7 TeV) 140 GeV Signal only H+ 130 GeV 119 GeV H, A 114 GeV h mH++ mH+ mH, mA All the masses of the Δ-like scalar bosons may be reconstructed.
Large mhand mH++ case (Case I) mh = 125 GeV and mH++ = 150 GeV mh = 125 GeV and mH++ = 300 GeV mh = 700 GeV and mH++ = 150 GeV mh = 700 GeV and mH++ = 300 GeV
Approximately formulae of Δr Case I: mA > mH+ > mH++ Case II: mH++ > mH+ > mA By using Case I: withmlightest = mH++ Case II: withmlightest = mA
Y=1 Higgs Triplet Model:Kinetic term Covariant Derivative VEVs Masses for Gauge bosons ρ parameter
Branching ratio of H++ Δm = 0 Δm = 10 GeV mH++ = 150 GeV mH++ = 500 GeV mH++ = 300 GeV mH++ = 150 GeV mH++ = 300 GeV mH++ = 500 GeV vΔ = 0.1 MeV, mH++ = 200 GeV Chakrabarti, Choudhury, Godbole, Mukhopadhyaya, (1998); Chun, Lee, Park, (2003); Perez, Han, Huang, Li, Wang, (2008); Melfo, Nemevsek, Nesti, Senjanovic, (2011) Phenomenology of Δm ≠ 0 is drastically different from that of Δm = 0.
Branching ratios of H+, H and A ★ The H+→ f0W+ mode can be dominant in the case of Δm ≠ 0. ★ The f0 → bb mode can be dominant when vΔ > MeV.
Renormalized hhh coupling in the 2HDM Kanemura, Okada, Senaha, Yuan (2004)