400 likes | 584 Views
throat. reservoir. exit. NON-EQUILIBRIUM KINETICS IN HIGH ENTHALPY NOZZLE FLOWS. G. Colonna Dip. di Chimica, Universitá di Bari andCNR-IMIP, Bari section. OVERVIEW. NOZZLE FLOW. - Numerical aspects - Coupling with kinetics. NONEQUILIBRIUM KINETICS. - Chemical kinetics
E N D
throat reservoir exit NON-EQUILIBRIUM KINETICS IN HIGH ENTHALPY NOZZLE FLOWS G. Colonna Dip. di Chimica, Universitá di Bari andCNR-IMIP, Bari section
OVERVIEW NOZZLE FLOW - Numerical aspects - Coupling with kinetics NONEQUILIBRIUM KINETICS - Chemical kinetics - Vibrational kinetics - Metastable state kinetics coupling state-to-state kinetics with fluid dynamic models FREE ELECTRON KINETICS - Boltzmann equation - Coupling with chemical kinetics - EM fields contribution
? Mass continuity Energy continuity State equation Momentum continuity quasi one dimensional steady model (space marching) Euler Equations
Multitemperature State-to-state Translational + degrees of freedom in equilibrium Chemical State-to-state kinetics: Multitemperature kinetics: u for internal enthalpy Enthalpy Closure
general reaction source term detailed balance Internal & Chemical Kinetics
detailed balance not valid for global rates general reaction Global rate 2nd Order Rates
Kinetic solution < 0 0 ! Numerical problems 0 NUMERICAL METHODS Sonic point: num=den=0
Speed calculation Kinetic solution Transonic Condition ∆2=0 u=speed of sound NUMERICAL METHODS
N2 Vibrational Relaxation N2(v)+N2(w) <-> N2(v-1)+N2(w+1) N2(v)+N2<->N2(v-1)+N2 N2(v)+N <-> N2(w)+N dissociation Dissociation/Recombination Harmonic obscillator N2(v)+N2(v') <-> N2(v-1)+2N N2(v')+N2<->2N+N2 N2(v)+N <-> 3N v=2 v=1 v=0 N2 Vibrational Kinetics
RECOMBINATION DISSOCIATION N2 Vibrational Distributions (0D) Natoms > Natoms(eq) Tvib > Tgas (similar to nozzle flow) Natoms < Natoms(eq) Tvib < Tgas (similar to shock wave)
N2 Vibrational Relaxation N2* diss/Ric N2* Quenching N2(v)+N2(w) <-> N2(v-1)+N2(w+1) N2(v)+N2<->N2(v-1)+N2 N2(v)+N <-> N2(w)+N N+N+N2<-> N2(B)+N2 N+N+N <-> N2(B)+N N+N+N2<-> N2(A)+N2 N+N+N <-> N2(A)+N N2(A) +N2(A) <-> N2(B)+N2(8) N2(A)+N2(A) <-> N2(C)+N2(2) N2(A)+N2(v≥6) <-> N2(B)+N2(v-6) N2(A) + N2<-> N2(v=0)+N2 N2(A)+N <-> N2(v<10)+N N2(B) + N2<-> N2(0)+N2 N2(a) +N2<-> N2(B)+N2 N2(a) +N <-> N2(B)+N N2(C) +N2<-> N2(a)+N2 Ionization Dissociation/Recombination N* Kinetics N2++N <-> N2(0)+N+ N+ N <-> N2++e- N++ e -<-> N+hn N2(a)+N2(A) <-> N2(v=0)+N2++e- N2(a)+N2(a) <-> N2(0)+N2++e- N2(a)+N2(v>24) <-> N2(0)+N2++e- N2(v)+N2(v') <-> N2(v-1)+2N N2(v')+N2<->2N+N2 N2(v)+N <-> 3N N(2D,2P)+N2<->N(4S)+N2 N(2P)+N(4S) <-> N(2D)+N(4S) N(4P) -> N(4S)+h N2* Radiation N2(B) -> N2(A)+h N2(C) -> N2(B)+h N2 Elementary Processes
O2 Vibrational Relaxation O2* Diss/Ric O2* Kinetics N2* Kinetics O2(v)+O2(w) <-> O2(v-1)+O2(w+1) O2(v)+O2<->O2(v-1)+O2 O2(v)+O <-> O2(v-1)+O O+O+X<-> O2(a)+X O+O+X <-> O2(b)+X N2* + X <-> N2(v=0) + X N2* + X(ground) <-> N2(v=0) + X* N2* + O <-> NO + N* O2* + X <-> O2(v=0) + X O2* + X(ground) <-> N2(v=0) + X* O2* + N <-> NO + O Mixed Vibrational Relaxation Dissociation/Recombination O* Kinetics N* Kinetics O2(v)+N2(w) <-> O2(v-2)+ N2(w+1) N2(v)+O2<->N2(v-1)+O2 N2(v)+O<->N2(v-1)+O O2(v)+O2(v’) <-> O2(v-1)+2O O2(v’)+O2<->2O+O2 O2(v’)+O <-> 3O O* + X<->N + X O* + X <-> N + X* O* + N2<-> NO + N N* + X<->N + X N* + X <-> N + X* N* + O2<-> NO + O NO Kinetics O2(v) + N <-> NO + O N2(v) + O <-> NO + N N + O + X <-> NO + X O2 & Air Elementary Processes
BOLTZMANN EQUATION ELECTRON DISTRIBUTION density in phase space electron mean velocity collision and Magnetic accelleration Electric mean energy Free Electron Kinetics
QUASI ISOTROPIC DISTRIBUTION INELASTIC SUPERELASTIC ELECTRON-ELECTRON ELASTIC isotropic anisotropic vy vy - + vx vx high low Two Term Approximation
Only drift velocity Electron enthalpy Internal enthalpy molar fractions Euler equations P T Approximate expansion cooling Boltzmann equation Master equations e-M rates Joule heating Level distribution molar fractions Electron drift energy Quasi 1D stationary Euler equations with with free electron kinetics and master equations APPROXIMATIONS Electron & Nozzle Flow SELF-CONSISTENT COUPLING
VIBRATIONAL KINETICS PURE NITROGEN and AIR
Tv N2 vibrational kinetics Gas and Vibrational Temperatures Vibrational non-equilibrium Tv > T Comparison of gas (T) and vibrational (Tv) reduced temperature profiles. T0=10000 K is the reservoir temperature.
Determine vibrational temperature Determine global rates Global and state selective rates N2 vibrational kinetics Vibrational Distributions At the nozzle exit the tail of the vibrational distribution is populated by atom recombination.
AIR vibrational kinetics Vibrational Distributions
AIR vibrational kinetics Global rates N2+O->NO+N The low temperature trend cannot be reproduced by a multitemperature expressions.
AIR vibrational kinetics NO molar fraction The concentration of NO increase again at the exit.
ELECTRON +VIBRATIONAL KINETICS PURE NITROGEN and AIR
∆M% ≈ 10 ∆T% ≈ 25 Ionized N2 Mixture Macroscopic quantities a) Only Vibrational Kinetics b) (case a) + Electronically Excited State Kinetics (no e-M) c) (case b) + Electron Kinetics (Boltzmann Equation) + e-M
N2(A) +N2(A) <-> N2(B)+N2(8) e +N2(v) <-> e+N2(v’<v) (superelastic) Ionized N2 Mixture Vibrational distributions a) Only Vibrational Kinetics b)(case a)+Electronically Excited State Kinetics (no e-M) c)(case b)+ Electron Kinetics (Boltzmann Equation) + e-M
With e-e coll Without e-e coll Ionized N2 Mixture Electron distributions Superelastic collisions
Ionized N2 Mixture Effect of atomic metastable (eedf) High electron density
Ionized N2 Mixture Effect of atomic metastable (vdf) High electron density
Ionized AIR Mach number Temperature
MAGNETO -HYDRO -DYNAMICS ARGON
FIELDS & GEOMETRY No Hall effect
EFFECTS of E/N Speed & Mobility
EFFECTS of E/N Molar fraction
T0=7000 K E/N=0.5 Td EFFECTS of B Molar fractions
T0=7000 K E/N=0.5 Td EFFECTS of B Electron mobility
MACROSCOPICMODELS FROMSTATE-TO-STATE PURE NITROGEN
RECOMBINATION REGIME 0d kinetics SPECIES TEMPERATURE
RECOMBINATION REGIME Rates modeling GLOBAL DISSOCIATION RATES
Linear dependence of the rates from the pressure; • Smooth dependence of the rates on the atomic • molar fraction; RECOMBINATION REGIME Relevant quantities
RECOMBINATION REGIME Rate fitting Boundary Layer Nozzle
Work in Progress A- Improving the kinetic model: state-to-state dissociation from QCT (Dr. F. Esposito, CNR-IMIP) B- Improving fluid dynamic model: From 1D to 2D (Dr. D. D’Ambrosio, Politecnico di Torino) C- MHD: inclusion of magnetic and electric fields configurations to include Hall effects and electric circuit modeling. D- REDUCED MODELS: finding a macroscopic model for air kinetics that accounts for nonequilibrium distributions (CAST).