1 / 18

Non-linear Effects in Diffusion on Nanoscale

Non-linear Effects in Diffusion on Nanoscale. D.L. Beke Z. Erd élyi , I.A. Szab ó , Cs. Cserh á ti. Department of Solid State Physics University of Debrecen. Diffusion in nanomaterials Two important features High numbers of grain- or phase boundaries (GB or PB) and dislocations

tavon
Download Presentation

Non-linear Effects in Diffusion on Nanoscale

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-linearEffects in Diffusion on Nanoscale D.L. Beke Z. Erdélyi, I.A. Szabó,Cs. Cserháti Department of Solid State Physics University of Debrecen

  2. Diffusion in nanomaterials • Two important features • High numbers of grain- or • phase boundaries (GB or PB) and dislocations • - fast diffusion and solid st. reactions, segregation, etc. • b) Principal problems (very short • distances and preferably no structural defects)

  3. Principal difficulties: • Short diffusion distances L d • (continuum description fails) • Gradient energy corrections • Stress effects

  4. x x x x x x x x i i i i i i i i 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 i i i i i i i i - - - - - - - - 1 1 1 1 1 1 1 1 i+1 i+1 i+1 i+1 i+1 i+1 i+1 i+1 N N N N N N N N - - - - - - - - 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N Discrete (Martin‘s) model dci/dt = -zv[ci(1-ci-1)i,i-1 – (1-ci)ci-1i-1,i + + ci(1-ci+1)i,i+1 – ci+1(1-ci) i+1,i]. i,i+1=exp(-Ei,i+1/kT) „Classical” Fick I.-II. ji,i+1=-Di(c/x)/ci/t = [Di(c/x)/]/ x

  5. Ei,i+1=Eo - i + i and Ei+1,i= Eo - i - i, V=VAB-(VAA+VBB)/2 i= [zv(ci-1+ci+1+ci+ci+2) + zl(ci+ci+1)](VAA-VBB)/2 iV. Input parameters: zv, zl,VAA-VBB,V,T (Z= 2zv+zl)

  6. -validity limit Dih=D(0)exp(mc) m= Z(VAA –VBB)/kT

  7. Effect of the strong concentration dependence of D Mo/V Mo/V a-Si/Ge x T=1053 K 680K 100h The interface reamins sharp and shifts!

  8. Dissolution in ideal systems: Ni into Cu 8 Ni Cu(111) time D(in Ni)<<D(in Cu)

  9. Linear kinetics !!! Monte Carlo Cu side Interface Ni side

  10. Experiment: AES from the top of Ni on Cu(111) T=679K

  11. Sharpening of a wide interface (T=1000K, m’=9) Ni-Cu Mo-V Mo-V

  12. Growth of intermetallid layer:

  13. nd ==c/ ( ( ) ) ( ( ) ) 2 2 3 3 ¶ ¶ ¶ ¶ ¶ ¶ 2 2 3 3 d d n n d d / / 2 2 n n d d / / 2 2 n n = = - - + + - - + + n n n n K K i i ¶ ¶ ¶ ¶ ¶ ¶ 2 2 3 3 2 2 x x 2 2 ! ! 3 3 ! ! x x x x n n - - ¶ ¶ c c c c c c = = + + 1 1 i i i i ¶ ¶ x x d d - - - - c c c c c c c c + + - - - - 1 1 1 1 i i i i i i i i ¶ ¶ 2 2 c c d d d d = = ¶ ¶ 2 2 d d x x i i - - 1 1 i i i+1 i+1

  14. e.g. i= (VAA-VBB){cZ +(zv+Z/4)d22c/x2 +...} = cZ(VAA-VBB)+i’ +... Introducing i,=exp[-(Eo-i)/kT]=ihexp[i’/kT]. and if i/kT«1 (i.e. exp[i/kT]1+ i/kT ji,i+1=Ji,i+1/q=Ji,i+1d/=-Di(c/x)/ + + Di[2/fo’’ - d2/24](3c/x3)/ +... Di=zvd2i~VFick I. Amorphous systems?, Stress effects…

  15. Xo=0 Constant concentration at the surface:

  16. Conclusions (ideal systems): • At short distances the continuum descriptions fails • and this strongly depends on the concentration • dependence of D (non-linearity) • - Non-linearity leads to shift of a sharp interface • The non-linearity leads to • a linear shift of a sharp interface • sharpening of an originally wide interface • Gradient energy corrections are important not only in • the currents but also in the mobilities

  17. Papers: CSIK, A., LANGER, G., BEKE, D.L., ERDÉLYI, Z., MENYHÁRD, M. SULYOK, A. Journal of Appl. Phys. 89/1, 804-806 (2001) BEKE, D.L., LANGER. G.A., CSIK, A., ERDÉLYI, Z., KIS-VARGA, M.,SZABÓ, I.A., PAPP, Z. Defect and Diff. Forum 194-199, 1403-1416 (2001) ERDÉLYI, Z., GIRARDEAUX., CH., BERNARDINI, J., BEKE, D.L, ROLLAND, A. Defect and Diff. Forum 194-199, 1161-1166 (2001)  ERDÉLYI, Z, GIRARDEAUX, CH. TŐKEI, ZS. BEKE, D.L. CSERHÁTI, C., ROLLAND, A. Surf. Sci., 496/1-2, 129 (2002) ERDÉLYI, Z, SZABÓ I.A., BEKE, D.L. Phys. Lev. Letters,in print

  18. Chapters: BERNARDINI, J, BEKE, D.L., „Diffusion in Nanomaterials” in „Nanocrystalline materials: Properties and Applications” (Eds. Knauth, P., Schoonman, J.) Kluwer Academic Publ., Boston, 2001 BEKE, D.L. CSERHÁTI, C., ERDÉLYI, Z., SZABÓ, I.A., “Segregation in Nanostructures” in „Advances in Nanophase materials and nanotechnology” Volume: „Nanoclusters” (ed. H.S. Nalwa) American Scientific Publ., 2002, in print SIDORENKO, S., BEKE. D.L., KIKINESHI, A., “Materials Science of Nanosctutures, Naukova Dumka, Kiyv, 2002

More Related