130 likes | 268 Views
Learning, Uncertainty, and Information: Learning Parameters. Big Ideas November 10, 2004. Roadmap. Noisy-channel model: Redux Hidden Markov Models The Model Decoding the best sequence Training the model (EM) N-gram models: Modeling sequences Shannon, Information Theory, and Perplexity
E N D
Learning, Uncertainty, and Information:Learning Parameters Big Ideas November 10, 2004
Roadmap • Noisy-channel model: Redux • Hidden Markov Models • The Model • Decoding the best sequence • Training the model (EM) • N-gram models: Modeling sequences • Shannon, Information Theory, and Perplexity • Conclusion
Bayes and the Noisy Channel • Generative and sequence
Hidden Markov Models (HMMs) • An HMM is: • 1) A set of states: • 2) A set of transition probabilities: • Where aij is the probability of transition qi -> qj • 3)Observation probabilities: • The probability of observing ot in state i • 4) An initial probability dist over states: • The probability of starting in state i • 5) A set of accepting states
Three Problems for HMMs • Find the probability of an observation sequence given a model • Forward algorithm • Find the most likely path through a model given an observed sequence • Viterbi algorithm (decoding) • Find the most likely model (parameters) given an observed sequence • Baum-Welch (EM) algorithm
Learning HMMs • Issue: Where do the probabilities come from? • Supervised/manual construction • Solution: Learn from data • Trains transition (aij), emission (bj), and initial (πi) probabilities • Typically assume state structure is given • Unsupervised
Manual Construction • Manually labeled data • Observation sequences, aligned to • Ground truth state sequences • Compute (relative) frequencies of state transitions • Compute frequencies of observations/state • Compute frequencies of initial states • Bootstrapping: iterate tag, correct, reestimate, tag. • Problem: • Labeled data is expensive, hard/impossible to obtain, may be inadequate to fully estimate • Sparseness problems
Unsupervised Learning • Re-estimation from unlabeled data • Baum-Welch aka forward-backward algorithm • Assume “representative” collection of data • E.g. recorded speech, gene sequences, etc • Assign initial probabilities • Or estimate from very small labeled sample • Compute state sequences given the data • I.e. use forward algorithm • Update transition, emission, initial probabilities
Updating Probabilities • Intuition: • Observations identify state sequences • Adjust probability of transitions/emissions • Make closer to those consistent with observed • Increase P(Observations|Model) • Functionally • For each state i, what proportion of transitions from state i go to state j • For each state i, what proportion of observations match O? • How often is state i the initial state?
Estimating Transitions • Consider updating transition aij • Compute probability of all paths using aij • Compute probability of all paths through i (w/ and w/o i->j) i j
Forward Probability Where α is the forward probability, t is the time in utterance, i,j are states in the HMM, aij is the transition probability, bj(ot) is the probability of observing ot in state bj N is the max state, T is the last time
Backward Probability Where β is the backward probability, t is the time in sequence, i,j are states in the HMM, aij is the transition probability, bj(ot) is the probability of observing ot in state bj N is the final state, and T is the last time
Re-estimating • Estimate transitions from i->j • Estimate observations in j • Estimate initial i