1 / 23

Reference from a constructive point of view

Reference from a constructive point of view. Pascal Boldini Université Paris IV CAMS-EHESS. The computational notions of meaning and reference. 2 + 3 : N. SS0 + SSS0 : N. S(SS0 + SS0) : N SS(SS0 + S0) : N SSS(SS0 + 0) : N SSS(SS0) : N SSSSS0 : N. 2+3 = 5 : N. Σ - types. Introduction

teige
Download Presentation

Reference from a constructive point of view

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reference from a constructive point of view Pascal Boldini Université Paris IV CAMS-EHESS

  2. The computational notions of meaning and reference 2 + 3 : N • SS0 + SSS0 : N • S(SS0 + SS0) : N • SS(SS0 + S0) : N • SSS(SS0 + 0) : N • SSS(SS0) : N • SSSSS0 : N 2+3 = 5 : N

  3. Σ - types • Introduction a : A b : B(a) ————————— (a,b) : (Σx:A)B(x) • Elimination c : (Σx:A)B(x) ——————————— p(c) : A q(c) : B(p(c)) • Equality c = (p(c),q(c)) : (Σx:A)B(x)

  4. DRT / Type Theory 1 • A man whistles. A dog follows him. • A man whistles u: (Σx:Man)whistles(x) • p(u) : Man • q(u) : whistles(p(u)) • A dog follows him • v: (Σx: Dog)follows(x,p(u)) • p(v) : Dog • q(v) : follows(p(v),p(u)) • Σ-intro • (u,v) : (Σy:(Σx:Man)whistles(x))((Σx:Dog)follows(x,p(y)))

  5. DRT / Type Theory 2 • If a farmer owns a donkey, he beats it. • If a farmer owns a donkey [u : (Σx:Farmer)(Σy:Donkey)owns(x,y)] • p(u) : Farmer • q(u) : (Σy:Donkey)owns(p(u),y) • p(q(u)) : Donkey q(q(u)) : owns(p(u),p(q(u))) • He beats it • v : beats(p(u),p(q(u))) • Σ-intro • (u,v) : (Πz: (Σx:Farmer)(Σy:Donkey)owns(x,y))beats(p(z),p(q(z)))

  6. References • G. Sundholm, ``Proof theory and meaning'', Gabbay, D. and Guenthner, F.(eds.), Handbook of Philosophical Logic, Vol. III, D. Reidel, 1986. • A.Ranta, Type-theoretical grammar, Oxford, Clarendon, 1994. • R. Ahn, Agents, Objects and Events, Technical University, Eindhoven, 2000.

  7. Reference to events • John stole the book, I saw it. u : stole(John, the_book) v : saw(I,u) (u,v) : (Σx:stole(John, the_book))saw(I,x)

  8. Propositions as sets 1 • Judgements : Man this : Man Paul : Man meaning meaning meaning  = this= Paul: Man : Man reference

  9. Propositions as sets 2 • Judgements : it rains  : it rains  : it rains meaning meaning meaning : it rains reference = Rain : Set  =  =  : it rains

  10. Interface {Semiotic system} signification (public) Judgements a : A sense (private) No entity without a type Reference α : A (ideal)

  11. Definite descriptions – Proper Nouns Frege Victor Hugo a : Person the author of Les Misérables • Well-known difficulties • some expressions do not refer: the king of France  • identity of reference is tautological: the morning star is the evening star • oblique contexts • John believes that the author of Les Misérables is Irish  • « Generally an expression denotes its reference, but within oblique contexts it denotes its meaning. »

  12. Definite descriptions – Proper Nouns Russell Victor Hugo | | the author of Les Misérables | | x(wrote(x,Les Misérables)  y(wrote(y,Les Misérables)  y=x)) a : Person Explains : definite descriptions without reference the content of referential identity Problem : The author of Les Misérables is a genious, but surely not the author of Hernani!

  13. Definite descriptions – Proper Nouns Kripke If Victor Hugo = the author of Les Misérables, the a priori (analytic) truth wrote(Victor Hugo, Les Misérables) is a necessary truth. But it makes sense to say: Victor Hugo might not have written Les Misérables. The proper name is a rigid designator « the reference of a proper named is not characterized by a definite description, nor by any bunch of properties. »

  14. Definite descriptions The constructive solution the author of Les Misérables : (Σx:Person)write(x,Les Misérables) (a,b) such that a : Person, b : write(a,Les Misérables) the author of Hernani : (Σx:Person)write(x,Hernani) (a,b’) such that a : Person, b’ : write(a,Hernani) We form without contradiction: genious(a,b)   genious(a,b’) : Prop

  15. Definite descriptions The constructive solution • Individuals as …. • Napoléon aware of the danger concentrated his troops on the left side {Semiotic system} (Napoléon,b) with b : aware(the_danger, Napoléon) • Definite descriptions without reference: the biggest natural number : (Σx:N)(Πy:N)(yx)  The type is a specification for the method of access to the reference.

  16. Proper nouns the constructive solution • Knowledge by acquaintance: Paul : Person • Knowledge by description : Victor Hugo : (Σx:Person)victor_hugo(x) Victor Hugo=(p(Victor Hugo),q(Victor Hugo)) • There is no coreference for proper nouns brave(Bonaparte)   brave(Napoléon) : Prop • There are no oblique contexts • John believes that the author of Les Misérables is Irish Assumptions required in the belief context: • p(Victor Hugo)=p(author of Les Misérables) : Person • homogeneity of the predicate to be Irish on the type Person and its sub-types.

  17. Contexts and their extensions • Г=[ x1:(Σx:Donkey)owns(Paul,x), x2:beats(Paul,p(x1))] a(x1,x2) : cruel(x1,x2,Paul) • Г1=[ y1:Donkey, y2: owns(Paul,y1), y3:beats(Paul,y1)] a((y1,y2),y3) : cruel((y1,y2),y3,Paul) f(y1,y2,y3)=((y1,y2),y3): Г0 lifting a(x1,x2) : cruel(x1,x2,Paul) Г0=[ x1:(Σx:Donkey)owns(Paul,x), x2:beats(Paul,p(x1))]

  18. Time and reference [x0 : Г0] a : Woman b(f(x0)) : meet(f(x0),John,a) • John met his wife in 1968. f his_wife(x0) : (Σx:Woman)married(x0,John,x) p(his_wife (x0))=a : Woman b(f(x0)) : meet(f(x0),John, p(his_wife(x0))) lifting a : Woman b(u) : meet(u,John,a) [u : Г1948]

  19. Victor Hugo might not have written Les Misérables. Counter-factuals a : Person Victor_Hugo(x0) : (x:Person)victor_hugo(x0,x) p(Victor_Hugo(x0)) = a : Person b(v) : write(a, Les Misérables) b(v) : write(p(Victor_Hugo(x0)), Les Misérables) v.b(v) : (v:)write(p(Victor_Hugo(x0)), Les Misérables) [v : ] [x0 : 0] g f [u : ] a : Person

  20. Mental spaces (G. Fauconnier) • In Luc’s painting, the blue eyed girl has green eyes. expected world a : Girl the_beg(x0) : (x:Girl)blue_eyed(x0,x) p(the_beg(x0)) = a : Person b(v) : green-eyed(v,a) b(v) : green-eyed(v, p(the_beg(x0))) v.b(v) : (v:Luc) green-eyed(v, p(the_beg(x0))) [v : Luc] [x0 : 0] g f [u : ] a : Girl

  21. Dependant predicates a : Person[Apocalypse, 0] • Marlon Brando dies at the end of Apocalypse Now. M_B(x0):(x:Person)m_b(x0,x) p(M_B(x0))=a:Person dies(v,a) dies(v, p(M_B(x0))) (v : Apocalypse) dies(v,p(M_B(x0))) Kurtz(v):(x:Person)kurtz(v,x) p(Kurtz(v))=a:Person dies(v,Kurtz) (v : Apocalypse) dies(v,Kurtz) [v : Apocalypse] [x0 : 0] g f [u : ] a : Person

  22. Generalized modus ponens (G. Fauconnier) • When he is a spy, all the beautiful women fall in love with Sean Connery. • In Russia With Love, Sean Connery is a spy ——————————————————— In Russia With Love, all the beautiful women fall in love with Sean Connery.

  23. Generalized modus ponens [w : RWL] a : Person[, 0] h S_C(x0) : (x:Person)s_c(x0,x) p(S_C(x0)) = a: Person b(v) : spy(a)(x:Woman)love(x,a) [v : ] [x0 : 0] g f [u : ] c(w) : spy(a) b(f(w))) : spy(a)(x:Woman)love(x,a) b(f(w))) c(w) : (x:Woman)love(x,a) b(f(w))) c(w) : (x:Woman)love(x, p(S_C(x0))) w. b(f(w))) c(w) : (w : RWL) (x:Woman)love(x, p(S_C(x0))) a : Person

More Related