610 likes | 806 Views
Evolutionary Games and Population Dynamics. Oskar Morgenstern (1902-1977) John von Neumann (1903-1957) John Nash (b. 1930). Nash-Equilibrium. Arbitrarily many players each has arbitrarily many strategies there always exists an equilibrium solution no player can improve payoff by deviating
E N D
Oskar Morgenstern (1902-1977)John von Neumann (1903-1957)John Nash (b. 1930)
Nash-Equilibrium • Arbitrarilymanyplayers • eachhasarbitrarilymanystrategies • therealwaysexists an equilibriumsolution • noplayercanimprovepayoffbydeviating • eachstrategybestreplytotheothers
Evolutionary Game Theory • Population ofplayers (not necessarily rational) • Subgroups meetandinteract • Strategies: Typesofbehaviour • Successfulstrategiesspread in population
Replicator equation for n=2 • Dominance • Bistability • stable coexistence
Vampire Bats Blood donation as a Prisoner‘s Dilemma? Wilkinson, Nature 1990 The trait should vanish Repeated Interactions? (or kin selection?)
Innerspecific conflicts Ritual fighting Konrad Lorenz: …arterhaltende Funktion
If n=3 strategies • Example: Rock-Paper-Scissors
Bacterial Game Dynamics • Escherichia coli • Type A: wild type
Bacterial Game Dynamics • Escherichia coli • Type A: wild type • Type B: mutant producing colicin (toxic) and an immunity protein
Bacterial Game Dynamics • Escherichia coli • Type A: wild type • Type B: mutant producing colicin (toxic) and an immunity protein • Type C: produces only the immunity protein
Bacterial Game Dynamics • Escherichia coli • Rock-Paper-Scissors cycle • Not permanent! • Serial transfer (from flask to flask): • only one type can survive! • (Kerr et al, Nature 2002)
Mating behavior • Uta stansburiana (lizards) • (Sinervo and Lively, Nature, 1998)