1 / 25

Turbulence Energetics in Stably Stratified Atmospheric Flows

Turbulence Energetics in Stably Stratified Atmospheric Flows. Sergej Zilitinkevich Division of Atmospheric Sciences, Department of Physical Sciences University of Helsinki and Finnish Meteorological Institute Helsinki, Finland Tov Elperin, Nathan Kleeorin, Igor Rogachevskii

temira
Download Presentation

Turbulence Energetics in Stably Stratified Atmospheric Flows

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Turbulence Energetics in Stably Stratified Atmospheric Flows SergejZilitinkevich Division of Atmospheric Sciences, Department of Physical Sciences University of Helsinki and Finnish Meteorological Institute Helsinki, Finland Tov Elperin, Nathan Kleeorin, Igor Rogachevskii Department of Mechanical Engineering The Ben-Gurion University of the Negev Beer-Sheva, Israel Victor L’vov Department of Chemical Physics ITI Conference on Turbulence III, 12-16 October 2008, Bertinoro, Italy

  2. Stably Stratified Atmospheric Flows Production of Turbulence Heating by Shear Destruction of Turbulence by Heat Flux Cooling

  3. Laminar and Turbulent Flows Laminar Boundary Layer Turbulent Boundary Layer

  4. Boussinesq Approximation

  5. Budget Equation for TKE Balance in R-space

  6. TKE Balance for SBL

  7. Observations, Experiments and LES Blue points and curve – meteorological field campaign SHEBA(Uttal et al., 2002); green – lab experiments(Ohya, 2001); red/pink – new large-eddy simulations (LES) using NERSC code(Esau 2004).

  8. Budget Equations for SBL • Turbulent kinetic energy: • Potential temperature fluctuations: • Flux of potential temperature :

  9. Budget Equations for SBL

  10. The turbulent potential energy: The source: Total Turbulent Energy

  11. Budget Equations for SBL

  12. Critical Richardson Number

  13. Deardorff (1970) No Critical Richardson Number

  14. Budget Equations for SBL

  15. Turbulent Prandtl Number vs.

  16. Budget Equations for SBL with Large-Scale Internal Gravity Waves

  17. Turbulent PrandtlNumber vs. Ri (IG-Waves) Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G= 0.1 (thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted ), at Q=1 for G=1 (thin solid) and without IG-waves at G=0 (thick solid).

  18. vs. (IG-Waves) Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G= 0.1 (thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted ), at Q=1 for G=1 (thin solid); and without IG-waves at G=0 (thick solid).

  19. vs. Ri (IG-Waves) Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA, Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G=0.04 (thin dashed), G= 0.1 (thin dashed-dotted), G=0.3 (thick dashed-dotted), at Q=1 for G=0.5 (thin solid); and without IG-waves at G=0 (thick solid).

  20. vs. Ri (IG-Waves) Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA, Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.001 (thin dashed), G=0.005 (thick dashed), G= 0.01 (thin dashed-dotted), G=0.05 (thick dashed-dotted), at Q=1 for G=0.1 (thin solid); and without IG-waves at G=0 (thick solid).

  21. vs. (IG-Waves) Meteorological observations: overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)]; laboratory experiments: diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008). Our model with IG-waves at Q=10 and different values of parameter G: G=0.2 (thick dashed-dotted), at Q=1 for G=1 (thin solid); and without IG-waves at G=0 (thick solid for ) and (thick dashed for ).

  22. Anisotropy vs. (IG-Waves) Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA, Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G= 0.01 (thick dashed), G=0.1 (thin dashed-dotted), G=0.2 (thin dashed), G=0.3 (thick dashed-dotted), at Q=1 for G=1 (thin solid); and without IG-waves at G=0 (thick solid).

  23. References • Elperin, T., Kleeorin, N., Rogachevskii, I., and Zilitinkevich, S. 2002 Formation of large-scale semi-organized structures in turbulent convection. Phys. Rev. E, 66, 066305 (1--15) • Elperin, T., Kleeorin, N., Rogachevskii, I., and Zilitinkevich, S. 2006 Tangling turbulence and semi-organized structures in convective boundary layers. Boundary Layer Meteorology, 119, 449-472. • Zilitinkevich, S., Elperin, T., Kleeorin, N., and Rogachevskii, I, 2007 Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Boundary Layer Meteorology, Part 1: steady-state homogeneous regimes. Boundary Layer Meteorology, 125, 167-191. • Zilitinkevich S., Elperin T., Kleeorin N., Rogachevskii I., Esau I., Mauritsen T. and Miles M., 2008, Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Quarterly Journal of Royal Meteorological Society, 134, 793-799.

  24. Conclusions • Budget equation for the total turbulent energy (potential and kinetic) plays a crucial role for analysis of SBL flows. • Explanation for no critical Richardson number. • Reasonable Ri-dependencies of the turbulent Prandtl number, the anisotropy of SBL turbulence, the normalized heat flux and TKE which follow from the developed theory. • The scatter of observational, experimental, LES and DNS data in SBL are explained by effects of large-scale internal gravity waveson SBL-turbulence.

  25. THE END

More Related