30 likes | 127 Views
LabData. Using Well-Founded Provenance Ontologies to Query Meteorological Data . Thiago Marcos da Silva Barbosa , Ednaldo O. Santos , Gustavo B. Lyra, Sérgio Manuel Serra da Cruz. Federal Rural University of Rio de Janeiro Database Lab. Why Meteorology ?. PROBLEM :
E N D
LabData Using Well-Founded Provenance Ontologies to Query Meteorological Data Thiago Marcos da Silva Barbosa, Ednaldo O. Santos, Gustavo B. Lyra,Sérgio Manuel Serra da Cruz Federal Rural Universityof Rio de Janeiro DatabaseLab
WhyMeteorology? • PROBLEM: • The investigation of extreme hydrometeorological events requires lots of data from sensors huge data bases. • It is not trivial for meteorologists to create SPARQL queries that involve meteorological data, provenance metadata and also ontology classes. • GOAL: Presentan approach that uses well-foundedontologiesandprovenance management techniques to aidresearchers to investigatethe cause oferroneousvaluesdetectedatanypointofthepre-processingchainofmeteorological data. • Letthemeteorologists to createsimplequeriesevenwithoutknowingthesyntaxofthe SPARQL language.
How? • Using: • Ontologicallywell-founded UML modelingprofile (OntoUML). A profile to developwell-foundedontologiesthatreflectsthestructureandaxiomatizationofUnifiedFoundationOntology (UFO) (Guizzard, 2005). • Open proVenanceOntology (OvO) (Cruz, 2012) to modelMeteoro ontology. • Developing: • A web-basedtoolthatallowstheresearches to navigatethroughtheconceptsandproperties, andgraphicallydevelopsimplequeriesbyselectingfeatureslikeontologyclass, object, propertiesandvalues to besearched.