1 / 20

Lock-in amplifiers

Lock-in amplifiers. http://www.lockin.de/. Noise amplitude. 1/ f noise. log(V noise ). White noise. 0. log( f ). 0.1 1 10 100 1kHz. Signals and noise. Total noise in 10 Hz bandwidth. Signal at DC. 1/ f noise. Frequency dependence of noise Low frequency ~ 1 / f

teneil
Download Presentation

Lock-in amplifiers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lock-in amplifiers http://www.lockin.de/

  2. Noise amplitude 1/f noise log(Vnoise) White noise 0 log(f ) 0.1 1 10 100 1kHz Signals and noise Total noise in 10 Hz bandwidth Signal at DC 1/f noise Frequency dependence of noise • Low frequency ~ 1 / f • example: temperature (0.1 Hz) , pressure (1 Hz), acoustics (10 -- 100 Hz) • High frequency ~ constant = white noise • example: shot noise, Johnson noise, spontaneous emission noise • Total noise depends strongly on signal freq • worst at DC, best in white noise region • Problem -- most signals at DC log(Vnoise) 10 Hz White noise 0 log(f ) 0.1 1 10 100 1kHz Signal at 1 kHz 1/f noise log(Vnoise) White noise 10 Hz 0 log(f ) 0.1 1 10 100 1kHz

  3. Lock-in amplifiers • Shift signal out to higher frequencies • Approach: • Modulate signal, but not noise, at high freq • no universal technique -- art • example: optical chopper wheel, freq modulation • Detect only at modulation frequency • Noise at all other frequencies averages to zero • Use demodulator and low-pass filter

  4. Product Two sine waves Sum Demodulation / Mixing • Multiply input signal by sine wave • Sum and difference freq generated • Compare to signal addition -- interference • Signal frequency close to reference freq • low freq beat • DC for equal freq sine waves • DC output level depends on relative phase

  5. Signal freq approaches ref freq • Beat frequency approaches DC as signal freq approaches ref freq Reference Signal freq vs ref freq 1 1.05 1.1 1.15 1.2 1.25 Mixer outputs

  6. Phase sensitive detection • Signal freq matches reference freq • Reference = sin(2pft) • Signal = sin(2pft+ f) • f is signal phase shift • Product = cos(f) - cos(2pft) DC part Signal phase shift f 0 0.2 p 0.4 p 0.6 p 0.8 p p Reference wave Product waveforms -- signal times reference

  7. Demodulated signal Lock-in amplifier After mixer Mixer Low pass filter Input Output Buffer After mixer & low pass Voltage time Reference Low pass filter Removes noise • Example -- modulate above 1/f noise • noise slow compared to reference freq • noise converted to slowly modulated sine wave • averages out to zero over 1 cycle • Low pass filter integrates out modulated noise • leaves signal alone

  8. Ideal 6 db/oct 12 db/oct log gain 18 db/oct frequency Typical LIA low pass filters • For weak signal buried in noise • Ideal low pass filter blocks all except signal • Approximate ideal filter with cascaded low pass filters

  9. Mixer Input Output Reference Phase shift f Phase control • Reference has phase control • Can vary from 0 to 360° • Arbitrary input signal phase • Tune reference phase to give maximum DC output

  10. Reference options System Lock-in amplifier Mixer Signal • Option 1 -- Internal reference • best performance • stable reference freq • Option 2 -- External reference • System generates reference • ex: chopper wheel • Lock internal ref to system ref • use phase locked loop (PLL) • source of name “lock-in amplifier” Reference System Lock-in amplifier Mixer Signal Reference VCO PLL Integrate

  11. Analog mixer Multiplying mixer • Direct multiplication • accurate • not enough dynamic range • weak signal buried in noise • Switching mixer • big dynamic range • but also demodulates harmonics Switching mixer Harmonic content of square wave 1 1/3 1/5 1/7 1/9

  12. bias source drain gate n p Signal voltage Switching mixer design • Sample switching mixer • Back-to-back FETs • example: 1 n-channel & 1 p-channel • feed signal to one FET, inverted signal to second FET • Apply square wave to gates • upper FET conducts on positive part of square wave • lower FET conducts on negative part Switching mixer circuit n-channel FET

  13. Signals with harmonic content • Option 1: Use multi-switch mixer • approximate sine wave • cancel out first few harmonic signals • Option 2: Filter harmonic content from signal • bandpass filter at input • Q > 100 Lock-in amp with input filter

  14. Digital mixers • Digitize input with DAC • Multiply in processor • Advantages: • Accurate sine wave multiplication • No DC drift in low pass filters • Digital signal enhancement • Problems: • Need 32 bit DAC for signals buried in noise • Cannot digitize 32 bits at 100 kHz rates • Should be excellent for slow servos • Ex: tele-medicine, temperature controllers • Digital processing can compensate for certain system time delays ?

  15. F(x) x Lock-in amps in servos Take derivative with lock-in • Lock to resonance peak • Servos only lock to zero • Need to turn peak into zero • Take derivative of lineshape • modulate x-voltage • F(x)-voltage amplitude like derivative • Use lock-in amp to extract amplitude of F(x) • “DC” part of mixer output • filter with integrator, not low-pass • No fundamental • only 2 f signal

  16. Lock-in amps for derivative • Lock-in turns sine wave signal into DC voltage • At peak of resonance • no signal at modulation freq • lock-in output crosses zero • Discriminant • use to lock Input signal F(x) x Lock-in output (derivative) Zero crossing at resonance

  17. Effect of modulation on lineshape I • Start with resonance lineshape • Intensity vs PZT voltage: I = I0 exp( -V2) • Modulate voltage: V= V0 sin (2 pf t) • Modified lineshape • Analog to numerical derivatives • Derivative is: I’ = I(V+ DV) - I(V) / DV • Set DV = 1 • Modulation replaces DV= V0 sin (2 pf t) • Derivative is sine wave part • Assumes is V0 small V V t I t

  18. Modulation amplitude 0.05 linewidth 0.1 0.2 0.5 linewidth 1 2 Effect of modulation amplitude • For large modulation amps • Distortion and broadening • Modulation like a noise source • Always use minimum necessary Expanded scan

  19. Mixer outputs Modulation amplitude 0.1 linewidth 0.2 • Maximum mixer output • modulation ~ 1 linewidth • saturates and broadens 0.5 linewidth 1 2 Mixer out 0.1 linewidth 0.2 0.5 1 2

  20. Fabry-Perot Laser PD LIA Acoustic noise reference Sum & HV Fabry-Perot servo • Lock to peak transmission of high Q Fabry-Perot etalon • Use lock-in amp to give discriminant • No input bandpass -- or low Q < 2 • Bandpass rolloff usually 2-pole or greater • No low pass filter -- replace with integrator • Low pass filter removes noise • Need noise to produce correction • Design tips • reference freq must exceed servo bandwidth by factor of ~ 10 • but PZT bandwidth is servo limiter • use PZT resonance for modulation

More Related