1 / 26

Introduction to Hybrid Parallel Programming

Learn about hybrid parallel programming, which combines the use of MPI and OpenMP to take advantage of shared memory and distributed memory in multi-core systems. Explore the benefits and how to create a hybrid program.

teodoroa
Download Presentation

Introduction to Hybrid Parallel Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hybrid Parallel Programming Introduction ITCS4145/5145, Parallel Programming C. Ferner and B. Wilkinson March 13, 2014. hybrid.ppt

  2. Hybrid Systems Since most computers are multi-core, most clusters have both shared-memory and distributed-memory. Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Interconnection Network Memory Memory Memory Memory Multi-core Computer Multi-core Computer Multi-core Computer Multi-core Computer

  3. Hybrid (MPI-OpenMP) Parallel Computing • We can use MPI to run processes concurrently on each computer • We can use OpenMP to run threads concurrently on each core of a computer • Advantage: we can make use of shared-memory where communication is required • Why? – Because inter-computer communication is an order of magnitude slower than synchronization

  4. Message-passing routines used to pass messages between computer systems and threads execute on each computer system using the multiple cores on the system

  5. How to create a hybrid OpenMP- MPI program • Write source code with both MPI routines and OpenMP directives/routines • mpicc uses gcc linked with appropriate MPI libraries. gcc supports OpenMP with –fopenmpoption. So can use that: mpicc -fopenmp -o hybrid hybrid.c • Execute as an MPI program. For example on UNCC cluster cci-gridgw.uncc.edu mpiexec.hydra-f <machinesfile> -n <number of processes> ./hybrid (VERY IMPORTANT -- NOT FROM cci-grid05)

  6. Example #include <stdio.h> #include <string.h> #include <stddef.h> #include <stdlib.h> #include "mpi.h" #define CHUNKSIZE 10 #define N 100 void openmp_code(){ … / next slide } main(intargc, char **argv ) { char message[20]; inti,rank, size, type=99; MPI_Statusstatus; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD,&size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); if(rank == 0) { strcpy(message, "Hello, world"); for (i=1; i<size; i++) MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD); } else MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); openmp_code(); //all MPI processes run OpenMP code, no message passing printf( "Message from process =%d : %.13s\n", rank,message); MPI_Finalize(); }

  7. void openmp_code(){ intnthreads, tid, i, chunk; float a[N], b[N], c[N]; for (i=0; i < N; i++) a[i] = b[i] = i * 1.0; // initialize arrays chunk = CHUNKSIZE; #pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid) { tid= omp_get_thread_num(); if (tid == 0) { nthreads= omp_get_num_threads(); printf("Number of threads = %d\n", nthreads); } printf("Thread %d starting...\n",tid); #pragma omp for schedule(dynamic,chunk) for (i=0; i<N; i++) { c[i] = a[i] + b[i]; printf("Thread %d: c[%d]= %f\n",tid,i,c[i]); } } /* end of parallel section */ }

  8. Parallelizing a double for loop int main(int argc, char *argv[]) { int i, j, blksz, rank, P, tid; char *usage = "Usage: %s \n"; FILE *fd; char message[80]; MPI_Init (&argc, &argv); MPI_Comm_size (MPI_COMM_WORLD, &P); MPI_Comm_rank (MPI_COMM_WORLD, &rank); blksz = (int) ceil (((double) N)/P); #pragma omp parallel private (tid, i, j) { tid = omp_get_thread_num(); for (i = rank*blksz; i < min((rank + 1) * blksz, N); i++) { #pragma omp for for (j = 0; j < N; j++) { printf ("rank %d, thread %d: executing loop iteration i=%d j=%d\n",rank tid,i,j); } } } } Loop i parallelized across computers Loop j parallelized across threads Code and results from Dr. Ferner

  9. Simple Example Result rank 0, thread 4: executing loop iteration i=0 j=4 rank 0, thread 2: executing loop iteration i=0 j=2 rank 0, thread 1: executing loop iteration i=0 j=1 rank 1, thread 0: executing loop iteration i=2 j=0 rank 1, thread 4: executing loop iteration i=2 j=4 rank 1, thread 2: executing loop iteration i=2 j=2 rank 1, thread 3: executing loop iteration i=2 j=3 rank 0, thread 0: executing loop iteration i=0 j=0 rank 1, thread 1: executing loop iteration i=2 j=1 rank 0, thread 3: executing loop iteration i=0 j=3 rank 2, thread 2: executing loop iteration i=4 j=2 rank 2, thread 0: executing loop iteration i=4 j=0 rank 2, thread 3: executing loop iteration i=4 j=3 rank 2, thread 4: executing loop iteration i=4 j=4 rank 2, thread 1: executing loop iteration i=4 j=1 rank 0, thread 2: executing loop iteration i=1 j=2 rank 0, thread 4: executing loop iteration i=1 j=4 rank 0, thread 3: executing loop iteration i=1 j=3 rank 0, thread 0: executing loop iteration i=1 j=0 rank 0, thread 1: executing loop iteration i=1 j=1 rank 1, thread 0: executing loop iteration i=3 j=0 rank 1, thread 2: executing loop iteration i=3 j=2 rank 1, thread 3: executing loop iteration i=3 j=3 rank 1, thread 1: executing loop iteration i=3 j=1 rank 1, thread 4: executing loop iteration i=3 j=4

  10. Hybrid (MPI-OpenMP) Parallel Computing Caution: Using the hybrid approach may not necessarily result in increased performance though – will strongly depend upon application.

  11. Matrix Multiplication, C = A * B where A is an n x l matrix and B is an l x m matrix.

  12. One way to parallelize Matrix multiplication using hybrid approach Parallelize i loop into partitioned among the computers with MPI for (i = 0; i < N; i++) for (j = 0; j < N; j++) { c[i][j] = 0.0; for (k = 0; k < N; k++) { c[i][j] += a[i][k] * b[k][j]; } } Parallelize j loop into partitioned among cores within each computer, using OpenMP

  13. Matrix Multiplication MPI_Init (&argc, &argv); MPI_Comm_size (MPI_COMM_WORLD, &P); MPI_Comm_rank (MPI_COMM_WORLD, &rank); blksz = (int) ceil (((double) N)/P); MPI_Scatter (a,N*blksz,MPI_FLOAT, a,N*blksz,MPI_FLOAT,0,MPI_COMM_WORLD); MPI_Bcast (b, N*N, MPI_FLOAT, 0, MPI_COMM_WORLD); #pragma omp parallel private (tid, i, j, k) { for (i = 0; i < blksz && rank * blksz < N; i++) { #pragma omp for nowait for (j = 0; j < N; j++) { c[i][j] = 0.0; for (k = 0; k < N; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } Parallelize i loop into partitioned among the computers with MPI Parallelize j loop on each computer into partitioned using OpenMP Code and results from Dr. Ferner

  14. Matrix Multiplication Results $ diff out MMULT.o5356 1c1 < elapsed_time= 1.525183 (seconds) --- >elapsed_time= 0.659652 (seconds) $ diff out MMULT.o5357 1c1 < elapsed_time= 1.525183 (seconds) --- > elapsed_time= 0.626821 (seconds) $ Sequential Execution Time Hybrid Execution Time Sequential Execution Time MPI-only Execution Time Hybrid did not do better than MPI only

  15. Perhaps we could do better parallelizing the i loop both with MPI and OpenMP Parallelize i loop into partitioned among the computers/threads with MPI and OpenMP #pragma omp parallel private (tid, i, j, k) { #pragma omp for nowait for (i = 0; i < blksz && rank * blksz < N; i++) { for (j = 0; j < N; j++) { c[i][j] = 0.0; for (k = 0; k < N; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } But this loop is too complicated for OpenMP j loop not parallelized

  16. #pragma omp parallel private (tid, i, j,k) { #pragma omp for nowait for (i = 0; i < blksz; i++) { if (rank * blksz < N) { for (j = 0; j < N; j++) { c[i][j] = 0.0; for (k = 0; k < N; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } } An if statement can simplify the loop

  17. Matrix Multiplication Results $ diff out MMULT.o5356 1c1 < elapsed_time= 1.525183 (seconds) --- >elapsed_time= 0.688119 (seconds) Sequential Execution Time Hybrid Execution Time Still not better

  18. Discussion Point • Why does the hybrid approach not outperform MPI-only for this problem? • For what kinds of problem might a hybrid approach do better?

  19. Hybrid Parallel Programming with the Paraguin compiler • The Paraguin compiler can also create hybrid programs • This is because it uses mpicc, it will pass the OpenMP pragma through to the resulting source

  20. Compiling • First we need to compile to source code • scc -DPARAGUIN -D__x86_64__ matrixmult.c -.out.c • Then we can compile with MPI and openmp • mpicc –fopenmp matrixmult.out.c –o matrixmult.out

  21. Hybrid Matrix Multiplication using Paraguin The i loop will be partitioned among the computers #pragma paraguinbegin_parallel #pragma paraguin scatter a #pragma paraguinbcast b #pragma paraguinforall for (i = 0; i < N; i++) { #pragma omp parallel for private(tID, j,k) num_threads(4) for (j = 0; j < N; j++) { c[i][j] = 0.0; for (k = 0; k < N; k++) { c[i][j] = c[i][j] + a[i][k] * b[k][j]; } } } The j loop will be partitioned among the 4 cores within a computer

  22. Debug Statements <pid 0, thread 1>: c[0][1] += a[0][0] * b[1][0] <pid 0, thread 1>: c[0][1] += a[0][1] * b[1][1] <pid 0, thread 1>: c[0][1] += a[0][2] * b[1][2] <pid 0, thread 2>: c[0][2] += a[0][0] * b[2][0] <pid 0, thread 2>: c[0][2] += a[0][1] * b[2][1] <pid 0, thread 2>: c[0][2] += a[0][2] * b[2][2] <pid 1, thread 1>: c[1][1] += a[1][0] * b[1][0] <pid 1, thread 1>: c[1][1] += a[1][1] * b[1][1] <pid 1, thread 1>: c[1][1] += a[1][2] * b[1][2] <pid 2, thread 1>: c[2][1] += a[2][0] * b[1][0] <pid 2, thread 1>: c[2][1] += a[2][1] * b[1][1] <pid 2, thread 1>: c[2][1] += a[2][2] * b[1][2] <pid 0, thread 0>: c[0][0] += a[0][0] * b[0][0] <pid 0, thread 0>: c[0][0] += a[0][1] * b[0][1] <pid 0, thread 0>: c[0][0] += a[0][2] * b[0][2] <pid 2, thread 0>: c[2][0] += a[2][0] * b[0][0] <pid 2, thread 0>: c[2][0] += a[2][1] * b[0][1] <pid 2, thread 0>: c[2][0] += a[2][2] * b[0][2] <pid 1, thread 0>: c[1][0] += a[1][0] * b[0][0] <pid 1, thread 0>: c[1][0] += a[1][1] * b[0][1] <pid 1, thread 0>: c[1][0] += a[1][2] * b[0][2] <pid 1, thread 2>: c[1][2] += a[1][0] * b[2][0] <pid 1, thread 2>: c[1][2] += a[1][1] * b[2][1] <pid 1, thread 2>: c[1][2] += a[1][2] * b[2][2] <pid 2, thread 2>: c[2][2] += a[2][0] * b[2][0] <pid 2, thread 2>: c[2][2] += a[2][1] * b[2][1] <pid 2, thread 2>: c[2][2] += a[2][2] * b[2][2]

  23. What does not work with Paraguin • Consider: #pragmaomp parallel structured_block • Example: #pragmaomp parallel private(tID) num_threads(4) { tID= omp_get_thread_num(); printf("<pid %d>: tid = %d\n", __guin_rank, tID); } Very Important Opening brace must be on a new line

  24. What does not work with Paraguin • The SUIF compiler removes the braces because they are not associated with a control structure • A #pragma is not a control structure, but rather a pre-processor directive. • After compiling with scc: #pragmaomp parallel private(tID) num_threads(4) tID = omp_get_thread_num(); printf("<pid %d>: tid = %d\n", __guin_rank, tID); Braces are removed

  25. The Fix • The trick is to put in a control structure that basically does nothing: dummy = 0; #pragmaomp parallel private(tID) num_threads(4) if (dummy == 0) { tID = omp_get_thread_num(); printf ("<pid %d>: tid = %d\n", __guin_rank, tID); } • Note: “if (1)” does not work If statement will always be true. This code is basically left intact.

  26. Questions

More Related