1 / 70

Wednesday May 31 st , 2017

Michael Pennington William & Mary / Glasgow. Wednesday May 31 st , 2017. Hadron Spectrum: window on confinement. Step One: spectrum of baryons, mesons quarks and QCD Step Two: tools for discovery, experiment and Amplitude Analyses

teresav
Download Presentation

Wednesday May 31 st , 2017

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michael Pennington William & Mary / Glasgow Wednesday May 31st, 2017

  2. Hadron Spectrum: window on confinement • Step One:spectrum of baryons, mesons quarks and QCD • Step Two: tools for discovery, experiment and Amplitude Analyses • Step Three: conserving probability and respecting causality • Step Four: tools for discovery, S-matrix theory 2 • Step Five: what’s new, computing QCD • Step Six: what’s to come, what to watch for HUGS

  3. QCD confinement strong coupling 1 strong QCD 0 -15 0 10 r (m) asymptotic freedom strong QCD pQCD

  4. Resonances inQCD 1 q( i D - m ) q -G G = q 4 QCD q=u,d,s, c,b,t

  5. q q q q q Resonances inQCD 1 q( i D - m ) q -G G = q 4 QCD q=u,d,s, c,b,t

  6. Theme: what are the relevant degrees of freedom?

  7. Theme: what are the relevant degrees of freedom?

  8. Confinement Physics

  9. precision research QCD accurate modelling precision tools

  10. S Basic tools of -matrix theory relativity conservation of probability causality

  11. Hadron Physics } hadrons A B

  12. S(p1,p2,...,pj;s1,s2…,sj; q1,…,qk;t1,…,tk) 2 2 2 3 3 3 p1 q1 p2 …... …. … qk pj

  13. pN scattering p+ p p+p p- p p- p s (mb) p p E (GeV) N N p p energy E N N

  14. positive pion positive pion . . . negative pion . . 0 100 200 MeV MARCH 12, 1952 DELTA RESONANCE DISCOVERED! Cross-section for positive pions on hydrogen peaks above 1200 MeV

  15. p+ p p+ p X p- p p- p X Baryon resonances (N*s and D*s) P33(1232) s (mb) E (GeV)

  16. Hadron States E E G ~ 1/ t G/2 lifetime M

  17. Hadron States E E Breit-Wigner x 1 M2 – s - iMG s = E2

  18. pN scattering p+ p p+p p- p p- p s (mb) p p E (GeV) N N p p p p L2I2J energy E N N N N

  19. S11(1650) S11(1650) D15(1675) F15(1680) p+ p p+ p X F35(1905) P33(1232) P31(1620) P31(1620) P31(1910) P31(1910) P31(1910) P31(1910) D33(1700) p- p p- p X S11(1535) S11(1535) F37(1950) F37(1950) P13(1720) s (mb) H19(2220) D13(1520) G17(2190) G19(2250) H31(2420) P11(1440) W (GeV) Baryon resonances (N*s and D*s)

  20. Spectrum of hadrons

  21. ds/dW 1234 MeV p p p p + + - 0 p p p n pN pNscattering 1449 MeV 1678 MeV - - p p p p 1900 MeV q q q

  22. P 1234 MeV p p p p + + - 0 p p p n pN pNscattering 1449 MeV 1678 MeV - - p p p p 1900 MeV q q q

  23. Relativistic kinematics C A t p1 p3 s D B p4 p2 2-to-2 scattering

  24. Center of momentum frame: J, j y x z p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p ) C p3 p1 A B p2 D p4

  25. Center of momentum frame: J, j y x z p3 = ( E3, q sinJ cosj, q sinJ sinj, q cos J ) p4 = ( E4, -q sinJ cosj, -q sinJ sinj, -q cos J ) C p3 p1 A B p2 D p4

  26. h = c = 1 Center of momentum frame: (m12 – m22) E1 = + (m12 – m22) 2 2 E2 = - 2 2 p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p )  s  s  s  s p12 = m12, p22 =m22 s = (p1 + p2)2 = (E1 + E2)2 4s p2 = s2 – 2 (m12 + m22) s + (m12– m22)2

  27. Center of momentum frame: x z p3 = ( E3, q sinJ, 0 , q cos J ) p4 = ( E4, -q sinJ, 0 , -q cos J ) C p3 J p1 A B p2 D p4

  28. Center of momentum frame: p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p ) p3 = ( E3, q sinJ, 0 , q cos J ) p4 = ( E4, -q sinJ, 0 , -q cos J ) u = (p1 – p4)2 = (p3- p2)2 t = (p1 – p3)2 = (p4- p2)2 s = (p1 + p2)2 = (p3 + p4)2 s + t + u = m12 + m22 + m32 + m42 t = m12 + m32 -2(E1 E3 –p q cos J) = m22 + m42 -2(E2 E4 –p q cos J)

  29. Center of momentum frame: p1 = ( p2 = ( /2, 0,0,p) /2, 0,0, -p) p3 = ( /2, p sin J,0, p cos J) p4 = ( /2, -p sin J,0, -p cos J) s = 4 (p2 + m2) t = -2 p2 (1 – cos J) u = -2 p2 (1 + cos J)  s  s  s  s simplest case all masses equal, m p = q

  30. scattering region AB CD s-channel Js Physical region: p2 > 0, 0 < Js < p s = 4 (p2 + m2) t = -2p2 (1 – cos Js ) s > 4m2 Recall: if all masses equal (m)

  31. ds dW dW J j q K(s) = spinless 64p2 p s ds = K(s) | (s,z) |2 F dW Scattering Amplitude, (s,t)for spinless particles F describes dependence on energy and J q dW = d(cos J) dj p flux factor depends on s & spin

  32. ds = 2p K(s) | (s,z) |2 F d z S (2l +1)fl (s)Pl ( z ) (s,z) = F l =0 fl(s)partial waves Scattering Amplitude, (s,t)for spinless particles F describes dependence on energy and J recall dW= d(cos J) dj let z = cos J

  33. Partial waves S s l l S (2l +1)fl (s)Pl ( z ) (s,z) = F l =0 l are the eigenvalues of angular momentum Pl (z) are the corresponding eigenfunctions

  34. Partial waves S s l l S (2l +1)fl (s)Pl ( z ) (s,z) = F l =0 with z = cos J fl(s) (s,J) Pl(cosJ) J F

  35. Legendre polynomials +1 +1 dz Pl (z) Pj (z) = 0 -1 -1 2 dlj ifl = j / dz Pl (z) Pj (z) = 2l + 1 P0(z) = 1 P1(z) = z P2(z) = (3z2 - 1)/2 P3(z) = (5z3 - 3z)/2 P4(z) = (35z4 –30 z2 + 3)/8 Pl(1) = 1 Pl (-z) = (-1)l Pl(z)

  36. Legendre polynomials 1 0 0.8 0.6 1 0.4 2 2 3 0.2 4 4 Pl(z) 0 -0.2 3 -0.4 -0.6 1 -0.8 -1 -1 -0.5 0 0.5 1 z P0(z) =1 P1(z) = z P2(z) = (3z2-1)/2 P3(z) = (5z3-3z)/2 Pl(1) = 1 Pl (-z) = (-1)l Pl(z)

  37. Partial waves S (2l +1)fl (s)Pl ( z ) (s,z) = F l =0 l 0 1 2 3 … fl S P D G … S l l l notation:

  38. Spin analysis L = 2 L = 0 L = 1 ds/dW ds/dW ds/dW cos J cos J cos J M 1 q M 2

  39. ds/dW 1234 MeV p p p p + + - 0 p p p n 1449 MeV 1678 MeV - - p p p p 1900 MeV q q q pN pNscattering

  40. p 0p ds/dW q (deg.)

  41. p 0p S q (deg.)

  42. p 0p M1 A L2I 2J M2 S N B q (deg.)

  43. pN scattering p+ p p+p p- p p- p s (mb) p p W (GeV) N N p p L2I2J N N

  44. pN scattering p p I = 1/2, 3/2 S = 1/2 L = 0, 1, 2, 3, … J = L + S = L - ½, L + ½ N N L2I2J p p L N N

  45. pNamplitudes Isospin 1/2 Imaginary T SAID: Workmanet al

  46. q q q q q 1 q ( i D - m ) q - G G = q 4 QCD q=u,d,s, c,b,t

  47. S31 F35 P31 P33 S11 D15 F15 D13 S31 P11 D35

  48. N*(1520) D13 D13

  49. Hadron States E E Breit-Wigner x 1 M2 – s - iMG s = E2 definite quantum numbersJ, P, C, I, ….

  50. 1 M2 (s) – s x s = E2 Breit-Wigner 1 M2 – s - iMG merely an approximation valid in the region of the pole

More Related