1 / 31

Wave-equation common-angle gathers for converted waves

Wave-equation common-angle gathers for converted waves. Paul Sava & Sergey Fomel Bureau of Economic Geology University of Texas at Austin. Imaging sketch. Wavefield reconstruction. Source wavefield. Receiver wavefield. Imaging condition. Image. Angle decomposition.

teris
Download Presentation

Wave-equation common-angle gathers for converted waves

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wave-equation common-angle gathers for converted waves Paul Sava & Sergey Fomel Bureau of Economic Geology University of Texas at Austin paul.sava@beg.utexas.edu

  2. Imaging sketch Wavefield reconstruction Source wavefield Receiver wavefield Imaging condition Image Angle decomposition Angle-dependent reflectivity R S paul.sava@beg.utexas.edu

  3. Wavefield reconstruction R S Source wavefield Receiver wavefield paul.sava@beg.utexas.edu

  4. Imaging condition Claerbout (1985) Location: m={x,y,z} Space shift: h={hx,hy,hz} Rickett & Sava (2002) Biondi & Symes (2004) Sava & Fomel (2005) paul.sava@beg.utexas.edu

  5. Angle decomposition Message: images obtained by space-shift imaging contain sufficient information for converted-wave angle decomposition! Location: m={x,y,z} Space shift: h={hx,hy,hz} Azimuth angle Reflection angle paul.sava@beg.utexas.edu

  6. Angle decomposition paul.sava@beg.utexas.edu

  7. PP reflection geometry 2pm 2ph ps pr paul.sava@beg.utexas.edu

  8. PS reflection geometry 2pm 2ph ps pr paul.sava@beg.utexas.edu

  9. PS reflection geometry 2pm 2ph ps pr paul.sava@beg.utexas.edu

  10. PS reflection geometry 3 relations, can eliminate 2 variables: paul.sava@beg.utexas.edu

  11. PS transformation 3 relations, can eliminate 2 variables. Example: eliminate w and . Sava & Fomel (2005) paul.sava@beg.utexas.edu

  12. PS transformation (2D) 3 relations, can eliminate 2 variables. Example: eliminate w and . Weglein & Stolt (1985) Sava & Fomel (2003) paul.sava@beg.utexas.edu

  13. Angle decomposition algorithm paul.sava@beg.utexas.edu

  14. Example 1 distance 0 depth 15 vP=2 km/s vS=1 km/s 45 30 paul.sava@beg.utexas.edu

  15. PP data PS data surface offset surface offset 0 time time 15 30 45 paul.sava@beg.utexas.edu

  16. PP image distance 0 depth 15 45 30 paul.sava@beg.utexas.edu

  17. PS image distance 0 depth 15 45 30 paul.sava@beg.utexas.edu

  18. PP offset-gather PS offset-gather space-shift space-shift depth depth paul.sava@beg.utexas.edu

  19. PP angle-gather PS angle-gather tan(q0) tan(q0) depth depth 0 15 30 45 0 15 30 45 PP transformation paul.sava@beg.utexas.edu

  20. PP angle-gather PS angle-gather tan(q0) tan(q) depth depth 0 15 30 45 0 15 30 45 PS transformation paul.sava@beg.utexas.edu

  21. Example 2 distance Modified from Baina et al. (2005): • acquisition • shots: 51 at 0.2km • receivers: 401 at 0.025km depth paul.sava@beg.utexas.edu

  22. PP data PS data surface offset surface offset time time paul.sava@beg.utexas.edu

  23. PP image PS image distance distance Uneven amplitude depth depth paul.sava@beg.utexas.edu

  24. PP offset-gathers PS offset-gathers space-shift space-shift depth depth paul.sava@beg.utexas.edu

  25. PP angle-gathers PS angle-gathers angle angle depth depth paul.sava@beg.utexas.edu

  26. PP angle-gather PS angle-gather angle angle depth depth PP transformation paul.sava@beg.utexas.edu

  27. PP angle-gather PS angle-gather angle angle depth depth PS transformation paul.sava@beg.utexas.edu

  28. PP angle-gathers PS angle-gathers angle angle depth depth Normal polarity paul.sava@beg.utexas.edu

  29. PP angle-gathers PS angle-gathers angle angle depth depth Reversed polarity paul.sava@beg.utexas.edu

  30. PP stack PS stack distance distance depth depth paul.sava@beg.utexas.edu

  31. Conclusions • Angle decomposition for converted-waves • Space-shift imaging condition • Independent of extrapolation method • Contains all required information • Real challenge: what are the velocity models? paul.sava@beg.utexas.edu

More Related