330 likes | 957 Views
Diseño de la Muestra. Inferir: sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra.
E N D
Inferir: sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. • Estadística inferencial: Se ocupa de predecir, sacar conclusiones, para una población tomando como base una muestra (es decir, una parte) de dicha población. Como todas las predicciones, siempre han de hacerse bajo un cierto grado de fiabilidad o confianza. INTRODUCCIÓN La estadística inferencial o inferencia estadística es una parte de la estadística que comprende los métodos y procedimientos para deducir propiedades (hacer inferencias) de una población, a partir de una pequeña parte de la misma (muestra).
. Población: Es el conjunto de individuos sobre los que hacemos cierto estudio y sus valores se conocen como parámetros. CONCEPTOS Muestra: es un subconjunto de la población y los resultados se generalizan a la población.
Muestreo: Es definido como el procedimiento empleado para obtener una o más muestras de una población Estrato: son subconjuntos de la población que agrupan unidades homogéneas. Cada estrato se muestrea por separado y se obtienen los estimadores de parámetros
Eleva costos en la aplicación y procesamiento de la investigación Complejo hacer la investigación a toda la población IMPORTANCIA EN LA TÉCNICAS DE MUESTREO Es posible que la indagación sea incompleta Falta de tiempo y de recursos
TIPOS DE MUESTREO PROBABILÍSTICO NO PROBABILÍSTICO • EL DE CUOTAS • INTENCIONAL O SELECTIVO • ALEATORIO SIMPLE • ESTRATIFICADO • POR RACIMOS • SISTEMÁTICO
PROBABILÍSTICO. Las unidades de análisis o de observación pueden ser seleccionadas en forma aleatoria, es decir todos tienen la misma probabilidad de ser elegidos. • El aleatorio simple: es aquel en el que todos los individuos de la población tienen la misma probabilidad de ser elegidos. • El estratificado:Se divide la población total en clases homogéneas, llamadas estratos; por ejemplo, por grupos de edades, por sexo. Hecho esto, la muestra se escoge aleatoriamente en número proporcional al de los componentes de cada clase o estrato. TIPOS DE MUESTREO PROBABILÍSTICOS
Por racimos: Es para los estudios de gran escala, por ejemplo: a nivel nacional donde el proceso es dividir determinadas delegaciones y de esta manera se distribuyan las muestras. • Sistemático:Se ordenan previamente los individuos de la población; después se elige uno de ellos al azar, a continuación, a intervalos constantes, se eligen todos los demás hasta completar la muestra. TIPOS DE MUESTREO PROBABILÍSTICOS
Aspectos: 1) Definir características de la población (100) 2) Tamaño de la muestra, según fórmula (79) 3) Tener y numerar una lista del tamaño de la población. 4) Elegirlos de manera aleatoria, utilizando la técnica de la tómbola o tablas • N= 100 • n= 79 EJEMPLO DE MUESTREO ALEATORIO SIMPLE
CONTINUACIÓN… n=79 N=100
EJEMPLO DE MUESTREO ESTRATIFICADO Se tienen 5 grupos de estudiantes de tercero de secundaria con una población como se indica en la tabla, se requiere aplicar un muestreo estratificado para saber sus conocimientos en matemáticas.
EL DE CUOTAS: Dividir la población en subgrupos o cuotas según ciertas características: sexo, estado civil, edad y otras. Puede haber combinaciones de cuotas, tales como hombres mayores de 20 años, mujeres casadas, etc. Por lo regular se eligen aquellos de más fácil acceso hasta completar la muestra. TIPO DE MUESTREO NO PROBABILÍSTICO EL INTENCIONAL O SELECTIVO: Se utiliza cuando se requiere tener casos que pueden ser representativos de la población estudiada. La selección se hace de acuerdo al esquema de trabajo del investigador.
En este apartado se muestran algunos procedimientos para calcular el tamaño muestral. • Muestras para estudios sencillos. • Muestras para estudios complejos. 1.6 Procedimientos para calcular el tamaño de la muestra.
Son apropiadas cuando: • La población objeto de estudio es arriba de 10mil casos. • El cuestionario que se aplica es reducido, entre 30 y 40 preguntas preferentemente cerradas. • Las alternativas de respuesta son mutuamente excluyentes (si, no; bueno, malo; adecuado, inadecuado). 1.7 Muestras para estudios sencillos.
Fórmula: z= Nivel de confianza requerido para generalizar los resultados hacia toda la población. p q= Variabilidad del fenómeno estudiado. E= Precisión con la que se generalizan los resultados. 2 z p q n= 2 E
El nivel de confianza (z) se obtiene de las tablas de áreas bajo la curva normal, como la presentada en la tabla:
Generalmente se emplea el 95% y 99% de confianza, o sea, se tiene un error de 5 y 1 por ciento respectivamente. Significa que si un tamaño de muestra se calcula utilizando un 95% de confianza, la probabilidad de que los datos de la muestra resulten idénticos en la población será del 95%, y un 5% de que difieran. Cuando se sustituyen los valores en la fórmula no se pone 95. Se utilizan valores tipificados obtenidos de la tabla de área bajo la curva normal. Por ejemplo: • 95% de confianza se divide entre 2 (ya que la curva normal está distribuida en dos partes iguales) = 47.50% se divide entre 100= .4750 y se busca en el cuerpo de la tabla. • Después el dato tipificado que le corresponde se localiza en la columna Z de la derecha. En este caso es 1.96.
De igual forma lo podemos hacer con el 99% o cualquier otro nivel de confianza. • Si queremos tener sólo un conocimiento general sobre la problemática es suficiente trabajar con un valor entre 92.5% y el 95%. • Si se pretende trabajar con hipótesis y obtener elementos debidamente sustentados para formular sugerencias, es mejor elevar el nivel de confianza de 95.5% o más. • Mientras más grande, mayor será el tamaño de la muestra.
El nivel de precisión (E) permite calcular el intervalo en donde se encuentran los verdaderos valores de la población. Por ejemplo, se analiza el problema de la participación en una comunidad: • Para el cálculo de la muestra se utilizó una precisión de 5 por ciento y un nivel de confianza del 9%. • El 50% responde que sí estaría dispuesto a colaborar. • Se debe sumar y restar el 5% (precisión) al porcentaje de respuestas afirmativas, o sea: • Es decir, se espera con un 95% de confianza que la respuesta a nivel de toda la población oscile entre el 45% y el 55%. • Al aumentar la precisión se eleva el tamaño de la muestra. 55% y 45%
El otro término de la fórmula es la variabilidad del fenómeno (p q). Entre los procedimientos para calcularla están: • Si se ha realizado otro estudio similar, la variabilidad especificada para el cálculo de la muestra puede servir para nuestro caso particular. • Mediante un estudio piloto de una muestra reducida. • Se otorga a p y q la máxima variabilidad posible, es decir p= .5 y q= .5. En este caso se supone que existe una heterogeneidad. • Al aumentar la variabilidad se incrementará el tamaño de la muestra. Con estas especificaciones se sustituyen los valores en la fórmula y se puede calcular el tamaño de la muestra.
Estudio realizado a 10 clínicas con personal femenino mayor a 30 años Datos: Z=1.96 E=5% P=0.6 q=0.4 N=3859 Ejercicio 1
Se simplifica la formula y se resuelve =810 Paso 2
Estudio realizado a 10 clínicas con personal femenino mayor a 30 años Datos: Nh= N=3859 Ejercicio
Sustituir la formula anterior y resolverla = Paso 1 Obtener la fracción para cada clínica
Realizar la proporcionalidad correspondiente con cada Nh )(Nh)= Paso 2