1 / 45

|Vus| and K S decays from KLOE

|Vus| and K S decays from KLOE. Gaia Lanfranchi, LNF/ INFN On behalf the KLOE Collaboration XL Rencontres de Moriond 5-12 March, 2005. Kaon physics at KLOE:. |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN. The KLOE Detector:. Calorimeter.

teryl
Download Presentation

|Vus| and K S decays from KLOE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. |Vus|and KS decays from KLOE Gaia Lanfranchi, LNF/ INFN On behalf the KLOE Collaboration XL Rencontres de Moriond 5-12 March, 2005

  2. Kaon physics at KLOE: |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  3. The KLOE Detector: Calorimeter Drift Chamber sp/p = 0.4 % (tracks with q > 45°) sxhit = 150 mm (xy), 2 mm (z) sxvertex ~1 mm s(Mpp) ~ 1 MeV σ(E)/E = 5.7%/E(GeV) σ(t) = 54 ps/E(GeV)  50 ps |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  4. Vus is a fundamental parameter of SM • PDG 2004: violation of unitarity? • To measure Vus we need ΓLe3 …. • We need to measure: BR(KLe3), τL |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  5. KL lifetime: direct measurement •  KL lifetime is “hard” to measure ! • Last measurement 30 years ago (Vosburgh et al, PRD 6 (1972), 1834): • Can’t stop KL’s! •  Knowledge of the KL momentum spectrum is required. •  Measure KL lifetime @ KLOE is possible because: •  KL’s are slow (βγ0.22, λL 340 cm); •  KL’s are (almost) monochromatic (P(KL)110 MeV); •  KL’s are background free (unambiguously tagged ). |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  6. KL lifetime: statistical error vs fit region T= ΔL/λ Number of eventsδτ/τ 0.40 8,000,000 0.3% 0.04 8,000,000  2.4% 0.004 8,000,000  20% KLOE To reach the 0.3% statistical accuracy you need a factor 3.5103 more events!! Number of events in the fit region T = fit region in lifetime units Statistical error |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  7. KL dominant BR’s: present experimental situation KL  KL e NA48: 0.4010±0.0045 KTeV: 0.4067±0.0011 PDG 2004: 0.3881±0.0027 KTeV: 0.2701 ±0.0009 PDG 2004: 0.2719±0.0022 KL 30 KL π+π-0 KTeV: 0.1945±0.0018 PDG 2004: 0.2105±0.0023 KTeV: 0.1252±0.0007 PDG 2004: 0.1258±0.0019 |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  8. KL dominant BR’s: What is KLOE’s role in this scenario? KLOE can measure:  absolute branching fractions (instead of ratios!);  KL lifetime. Therefore KLOE can provide a complete and self-consistent set of measurements of the dominant KL decay widths without relying on external inputs. |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  9. The KLOE KL “beam”: 1) Pure andtagged KL beam: • KL tagged by KS+-events: • Efficiency ~ 70% (mainly geometrical) • KL angular resolution: ~ 1° • KL momentum resolution: ~ 1 MeV KS+- we can measure absolute BRs since the normalization is provided by tagging events. KL 2p0 2) Low energy, monochromatic beam: P (KL)  110 MeV, βγ0.22, λL 340 cm  a big fraction of KL (50%) decays inside the detector  We can measure KL lifetime. p 110 MeV  KS KL BR = 34% |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  10. KL absolute BR’s and lifetime: DATA SAMPLE: 2001+2002 data sample: 400 pb-1 statistics, 50106 tagged KL:  13 million tagged KL used to evaluate the absolute BR’s;  40 million tagged KL used to evaluate systematic uncertainties;  15 million of KL 3π0 for the direct measurement of the lifetime. |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  11. KL absolute BR’s: For each KL decay mode (i=π,πe,30,+-0) we count the number of events in a given fiducial volume: Tagging efficiency: Depends on the channel Can introduce a BIAS Reconstruction efficiencies: • KLπ, πeε (rec)  60% • KL  π+π-π0 ε (rec)  45% • KL  3π0 ε (rec)  100% Integral over the fiducial volume: ε (FV, τL)  26%, depends on τL |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  12. KL absolute BR’s: tag bias After these cuts the tag bias is reduced to 1-2 %: p+p-p0 Ke3 Km3 3p0 etagi / etagall .998(4) .986(2) .984(3) 1.017(3) Slightly different tagging efficiencies for different KL topologies: etagi / etagall 1 1) Different trigger efficiency for KL decays in FV / KL interactions in calo / KL punch-through:  require that KS pions satisfy trigger conditions by themselves  trigger efficiency cancels out 2) Interference effect between KS and KL tracks lowers reconstruction efficiency for KSπ+π- decays at small RL:  cut on the opening angle of KS pions |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  13. KL absolute BR’s: KLcharged • Charged decays selected by closing the kinematics at the vertex: Pmis- Emiss. • Fit data with linear combination of 3 MC shapes. • Large statistics, accuracy is dominated by systematics . Lesser of Pmiss  Emiss in  or  hyp. (MeV) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  14. KL absolute BRs: KL charged • Pmiss - Emiss distribution very sensitive to radiation and momentum resolution • Check data/MC agreement via independent PID: e/μ/π from TOF and shower shape • Radiative corrections properly included in the Monte Carlo generators. Enriched sample of KLπe events Enriched sample of KLπ events Pmiss Emiss (MeV) (πe hypothesis) Pmiss Emiss (MeV) (πμ hypothesis) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  15. KL absolute BR’s: KL 000 The photon vertex of KL  3p0 is reconstructed by TOF, using cluster time/position and KL momentum (from K S p+p- ) . (Xγ,Yγ,Zγ,Tγ) L Lγ π+  solved for the two variables Lγ, LK  LK e+ e- π-  Use events with  3 photons “clustering” a vertex  99.2% selection efficiency  Residual background (1.3%, mainly π+π-π0 events) is subtracted.. |Vus| and KS decays from KLOE, G. Lanfranchi – LNF/INFN

  16. KL absolute BR’s: final results Absolute BR's results (tKL= 51.54  0.44 ns, PRD 6 (1972), 1834) BR(KL e) = 0.4049  0.0010stat 0.0031syst BR(KL ) = 0.2726  0.0008stat  0.0022syst BR(KL 3) = 0.2018  0.0004 stat 0.0026 syst BR(KL ) = 0.1276  0.0006 stat 0.0016 syst Systematics: |Vus| and KS decays from KLOE, G. Lanfranchi – LNF/INFN

  17. KL dominant BR’s: unitarity and lifetime • The BR depend on the KL lifetime through the acceptance: eFV Assuming S BR(KL X) =1 we have an indirect measurement of the KL lifetime: tKL= (50.72  0.14stat 0.36syst) ns ε = 25% 340 cm l(KL) (cm) • The sum of the dominant branching fractions (plus KL rare decays from PDG) gives: |Vus| and KS decays from KLOE, G. Lanfranchi – LNF/INFN

  18. KL dominant BR’s: results imposing unitarity BR(KL e) = 0.4007  0.0006  0.0014 BR(KL ) = 0.2698  0.0006  0.0014 BR(KL 3) = 0.1997  0.0005  0.0019 BR(KL ) = 0.1263  0.0005  0.0011 |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  19. KL dominant BR’s: comparison KL e (no PDG) 0.4045±0.0009 χ2 = 5.1 KL  0.2702±0.0007 χ2 = 0.3 KLOE NA48 KTeV PDG04 KLOE KTeV PDG04 KL π+π-0 0.1255±0.0006 χ2= 0.4 KL  30 (no PDG) 0.1968±0.0012 χ2=1.9 KLOE NA48* KTeV PDG04 KLOE KTeV PDG04 * Presented by L.Litov @ICHEP04 15

  20. KL lifetime: direct measurement L Lγ π+  solved for the two variables Lγ, LK  LK e+ e- π- We use KLπ0π0π0 events tagged by KSπ+π- events:  “tagging” and “tagged” events are fully decoupled.  trigger efficiency is 100%, almost flat in the fiducial volume  The KL vertex is reconstructed by TOF, using cluster time/position and KL momentum (from K S π+π-) . (Xγ,Yγ,Zγ,Tγ) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  21. KL lifetime: control sample We use KLπ+π-π0 events to measure : EmC time scale calibration;  Vertex resolution;  Vertex reconstruction efficiency. + -  (vertex,π+π-)  1 mm KL γ  e+ + e- KS γ π- |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  22. KL lifetime: EmC time scale and vertex resolution Vertex resolution: Plot di risoluzione π+π-π0 data: <σ (LK)>  2.5 cm LK (+-) (cm) EmC Time Scale: Plot di time scale L(γγ) – L(π+π-) (cm) set at 0.1% level L(π+π-) (cm) L(π+π-) (cm) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  23. KL lifetime: final result Events/0.3 ns + data Yes, it’s going down!!  14 x 106 events Fit region = 6 -26 ns ( 40% τL) t*= LK/βγc (ns) τL(KLOE) = (50.87 ±0.16 (stat) ± 0.26 (syst)) ns |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  24. KL lifetime: comparison average: τL = (50.98 ± 0.21) ns KLOE direct KLOE indirect Vosburgh et al, PRD 6 (1972), 1834 PDG 2004 = (51.8 ± 0.4) ns |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  25. |Vus| from Ke3 decays and τL: • Most precise test of CKM unitarity comes from 1st row: |Vud|2 + |Vus|2 + |Vub|2~ |Vud|2 + |Vus|2  1 – D where it can be tested at 10-3 level: 2|Vud|dVud = 0.0015 from super-allowed 0+ 0+ Fermi transitions, n b-decays 2|Vus|dVus = 0.0011 from semileptonic kaon decays (PDG 2002 fit) • |Vus| from neutral Kl3 partial decay widths: ½ 128 p3 GKl3 1 K0p- Vus f+ (0) = G2m M5KSew Il (l+,l0 l+´,...) 1 + dem,l f+Kp(0)form factor at zero momentum transfer, pure theory calculation (PT, lattice) I(l) phase space integral, Sew short distance corrections (1.0232) l+, l0 momentum dependence of vector and scalar form factors (f+(t), f0(t),t =q2) demelectromagnetic correction (amplitude and phase space): 0.5%Ke3-0.8%Kmu

  26. |Vus| from Ke3 decays and τL: l+ = 0.0226  0.0114 from KTeV + ISTRA l+ = 0.0023  0.0004 l0 = 0.0154  0.0008 BR(KL e) = 0.4007  0.0006  0.0014 BR(KL ) = 0.2698  0.0006  0.0014 Prescription from hep-ph/0411097 (F. Mescia @ICHEP04): 1) Quadratic parametrization of the form factor momentum dependence: 2) KL lifetime from KLOE (average of the two measurements) : tKL= (50.81  0.23) ns 3) BRs from KLOE set the sum = 1: 4) Form factor f+K(0) from Leutwyller-Roos: 0.961(8) confirmed by D. Becirevic et al (Lattice+CHPT) 0.960(9) M. Okamoto et al. (MILC) (Lattice+CHPT)0.962(11)

  27. |Vus| from Kl3 decays and τL: |Vus|f+Kπ(0) KLOE PRD 6 (1972), 1834 KLOE results: |Vus|f+K(0) (KSe3) = 0.2169 0.0017 |Vus|f+K(0) (KLe3) = 0.2164 0.0007 |Vus|f+K(0)(KLm3) = 0.2174 0.0009 From Unitarity: (1-|Vud|2)1/2f+K(0) = 0.2177 0.0028

  28. KS physics: first observation of KSπ decay:  2001 Data signal +ppg+ pp Emiss = MK2 + PK2 – E– Em Pmiss = |PK – P– Pm| Selection à la KSπe: Kcrash tag + 2 tracks from IP with Mππ< 490 MeV (reject KSππ(γ)) TOF identification: compare πμ expected flight times, reject ππ,πμ bkg Kinematic closure: use KL to obtain KS momentum PK and test for presence of neutrino: |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  29. The KLOE KS “beam”: KL“crash” βγ 0.22 , TOF  30 ns KStagged by KL interaction in EmC:  efficiency  30 %  KSangular resolution: 1 (0.3 in )  KSmomentum resolution: 1 MeV  3 · 105 tags/pb-1 KSπe |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  30. Direct search for KSπ0π0π0 decay: • Analysis Outline: • Signal selection: • KL crash tag + 6 prompt photons , no tracks from IP • Background: • KS π0π0 + 2split/accidental clusters • Background rejection: • compare 3p vs 2p hypotheses: • c23p- pairing of 6g clusters with better p0 mass estimates • c22p -bestpairing of 4g’s out of 6: p0 masses, • E(KS), P(KS), c.m. p0 -p0 angle c22p Data MC KS 3p0 80 Signal BOX 60 40 20 c23p 0 0 10 20 30 40 KS  3p0is pure CP violating decay, never observed: SM prediction: GS000 = GL000|e+e000|2, giving BR(KS  3p0) = 1.9 10-9: Best result:BR(KS  3π0 ) < 7.4 10-7 (90% CL) (NA48, hep-ex/0408053) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  31. KSπ0π0π0 upper limit: final result Nbkg =3.13 ± 0.82stat± 0.37sys BR(KSπ0π0π0) < 1.2  10-7 @ 90% CL Nobs =2  (events with KL tag) = 24.3% KLOE A(KS  p0p0p0) NA48 A(KL  p0p0p0) A factor 5 better than the previous limit! Using the PDG values and our limit we have: |h000| = < 1.8 10-2 , 90% CL 90 % CL NA48 (hep-ex/0408053) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  32. KSπ0π0π0 decay and Bell-Steinberger relation: (1 + i tanfSW)(Re e -iIm d) = Sf A*(KSf) A(KLf) CP Exp. input (G and phases) CPT 1 ΓS Uncertainty on KS  3p0 amplitude enters in the Bell-Steinberger relation: KS,L = K1,2+( ± δ)K2,1 A limit onBR(KSπ0π0π0)  10-7 error on Im δ  2 · 10-5 (dominated now by η+- ) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN 29

  33. NA48 Summary: What we have now: Measurements of all the dominant KL BR’s at 0.5% accuracy; Two measurements of the KL lifetime at 0.6% accuracy;  Best upper limit on KSπ0π0π0 decay;  First Observation of KSπ decay • Coming soon: • Final result on KS semileptonic BR; •  Analysis of KL semileptonic form factor slopes; •  Analysis of K±, BR’s and lifetime. |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN 30

  34. BACKUP SLIDES

  35. Daily Lum (nb-1) Int Lum (pb-1) Peak Lum (cm-2 s-1) NA48 The present data taking: Luminosity collected since may 2004: L 770 pb-1 • goal is 2 fb-1 within december 2005 a factor 4 more than the present statistics Next in line: •  Limit on KS-> 3π0 at the 10-8 level •  KS semileptonic asymmetry to 4 × 10-3  First interferometry studies of KSKL system |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  36. The KLOE detector:  e+ e- Be beam pipe (0.5 mm thick) Instrumented permanent magnet quadrupoles (32 PMT’s) Drift chamber (4 m  3.3 m) 90% He + 10% IsoB, CF frame 12582 stereo sense wires Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT’s Superconducting coil (5 m bore) B = 0.52 T ( B dl = 2 T·m) |Vus| and KS decays from KLOE, G. Lanfranchi – LNF/INFN

  37. KL lifetime: vertex reconstruction efficiency vertex efficiency for3π0 MC (%) vertex efficiency forπ+π-π0 (data & MC) (%) MC DATA LK (true) (cm) LK ( π+π-) (cm) |Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

  38. KL absolute BR’s: KL 000 KLOE photons are very low energy photons! Photon efficiency measured on data using KLπ+π-π0 events Photon energy spectrum + DATA - Monte Carlo Plot dell’energia totale per 6 fotoni O della massa totale. 7 MeV <Eγ< 250 MeV |Vus| and KS decays from KLOE, G. Lanfranchi – LNF/INFN

  39. 000 +-0 e  Effect of the tag bias: Before cuts: After cuts: ε (tagging) ε (tagging) LK (cm) LK (cm)

  40. The t0 of the event: T(measured) = T(stop)-T(start) T(stop) = T + 1(cables+FEE) T(start) = Ttrg + 2(cables+FEE) + rephasing T(measured) = T + (2 - 1) - (Ttrg+ rephasing) = T + T0

  41. The t0 of the event: T(measured) = T(stop)-T(start) T(stop) = T + 1(cables+FEE) T(start) = Ttrg + 2(cables+FEE) + rephasing T(measured) = T + (2 - 1) - (Ttrg+ rephasing ) = T + T0 In the simplest case of a photon we have: T = L/c  Tmeasured-L/c = T0 For each event we have to find one particle that can fix the T0 for that event !

  42. KS  π0π0π0 search: background calibration  DATA -- MC ALL ALL c22p<14 c23p c23p A good agreement is observed in each scatter plot region 14<c22p<40 c22p>40 c23p c23p

  43. KS  π0π0π0 search: background calibration c23p<4 c23p>4  DATA -- MC ALL c22p c22p A good agreement is observed in each scatter plot region ALL c22p

More Related