250 likes | 469 Views
Why Designate Market Makers? Affirmative Obligations and Market Quality. Hank Bessembinder University of Utah Conference on Pacific Basin Finance, Economics, Accounting, and Management July 21, 2007. How Should Financial Markets Be Organized?. Human-Intermediated or Computerized?
E N D
Why Designate Market Makers? Affirmative Obligations and Market Quality Hank Bessembinder University of Utah Conference on Pacific Basin Finance, Economics, Accounting, and Management July 21, 2007
How Should Financial Markets Be Organized? • Human-Intermediated or Computerized? • Anonymous or Identities Revealed? • Transparent or Opaque? • With or without a Discrete Price Grid? • What rules to govern execution order? • With or without a “Designated Market Maker”? • I focus today on the last question.
A Designated Market Maker (DMM) • Generally agrees to some specific responsibilities to provide liquidity for customers. • Liquidity is the ability to buy or sell quickly at low cost. • Responsibility referred to as “affirmative obligation”. • In exchange for some special rights, or for other compensation.
The NYSE “Specialist” • Is probably the best-known DMM. • But is not typical. • Obligation is to “maintain fair and orderly markets”. • Attributable to regulation by U.S. SEC. • Is compensated by a “last mover advantage”.
More Typical • A Designated Market Maker whose main obligation is to keep the “bid-ask spread” narrow. Bid-Ask spread = the lowest price asked for customer purchases – the highest price bid for customer sales.
DMMs with a “Maximum Spread Rule” are Observed on Many Markets • Stock Markets: • NYSE/Arca, • Toronto Stock Exchange, • London Stock Exchange, • Deutsche Bourse, • Euronext, • Stockholm Stock Exchange, • Spain, Italy, Greece, Denmark, Austria, Finland, Norway, and Switzerland, many others. • Derivative Markets: • CBOE, Montreal Bourse, Australian Exchange Options, others. • Notably, these markets appear to have voluntarily adopted DMMs in the absence of any government requirement.
Example: Stockholm Exchange Contracts (described by Anand, Tanggaard, Weaver (2006))
Why A Maximum Spread Rule? • My coauthors, Mike Lemmon and Jia Hao, and I: • Develop a theory of why a DMM constrained by a maximum spread rule can be economically efficient. • (Distinct from the electronic vs. human-intermediated issue.) • (The answer cannot simply be “because liquidity is valuable” – so are BMW’s) • Illustrate the reasoning by simulating the Glosten-Milgrom sequential trade model.
Financial Market Efficiency • We assess the effect of a maximum spread rule on: • (1) Allocative Efficiency. • How well does the market facilitate movement of assets from those who value them less highly to those who value them more highly? • (2) Speed of “Price Discovery” • How rapidly do market prices converge to underlying value?
We Show: • A maximum spread rule improves allocative efficiency. • Improves social welfare. • A maximum spread rule speeds price discovery • By encouraging more traders to become informed. • Can increase or decrease social welfare.
How is Allocative Efficiency Improved? • In a competitive market, liquidity suppliers must recover their costs, which include: • (1) Order processing and inventory costs. • These are also costs to society as a whole. • Referred to by Stoll (2000) as “real frictions”. • (2) Losses to better-informed traders. • These are not costs to society as a whole, just a transfer across parties. • Referred to by Stoll (2000) as “informational frictions” • Creates an “externality” argument.
Trading Activity and Asymmetric Information Costs 0.14 0.12 0.1 0.08 Motivation to Trade (ρ) Out-of-Pocket Cost, C Costs and Benefits Asymmetric Info. Cost 0.06 C plus Asymmetric Info. Cost 0.04 0.02 0 0 10 20 30 40 50 • 60 70 80 90 100 Number of Trades Trading and Allocative Efficiency Q Q*
Market Maker Losses • When binding, a maximum spread rule will tend to impose trading losses on the designated market maker. • We consider two scenarios: • If market making is competitive, the DMM must be compensated by a side payment. • (Observed in Sweden and France --Anand, Tanggaard, and Weaver, 2007, Venkataraman and Waisburd (2007)) • If the DMM has some market power, spreads can be constrained at times, while still allowing the DMM to break even intertemporally.
Related Literature: • Endogenous liquidity provision Demsetz (1968), Ho & Stoll (1980), Dutta & Madhavan (1997) Kandel & Marx (1997),Rock (1996), Seppi (1997) , Glosten (1989) • Obligations to supply liquidity. • Venkataraman & Waisburd (2006) • Dutta & Madhavan (1995) • Empirical work regarding affirmative obligations • Anand & Weaver (2006) -- CBOE • Venkataraman & Waisburd (2006) – Euronext Paris • Anand, Tanggaard & Weaver (2006) – Stockholm Stock Exchange • Panayides (2007) – NYSE.
To Address these issues, We Simulate Versions of The Glosten-Milgrom Sequential Trade Model • Risk neutral traders arrive sequentially, in random order. • Each trader either buys one unit, sells one unit, or does not trade. • Depends on their subjective valuations (i.e., consumption versus saving motive). • A known proportion of the traders knows the asset’s economic value exactly. • We endogenize this proportion • The bid-ask spread arises as an informational phenomenon. • The rest of the traders and the market maker form rational expectations of asset value conditional on the obligation in place. • With Bayesian updating upon observing trades • Price discovery is not instantaneous. • Instead, we have semi-strong form efficiency, with eventual convergence.
Limitations and Features of the GM Model • Limitations: • Cannot capture any effects through trade size or trade timing. • Only market orders, no limit orders (cannot capture “aggressiveness”) • Requires noise trading. • A trader’s private valuation of the asset is E(V) + ρi • ρi is a parameter of the individual trader’s utility function. • It represents any motive for trade except knowledge of non-public information regarding asset value. • E.g., the personal preference for current vs. future consumption • Market makers have ρ= 0, incur out-of-pocket cost, c, to complete trades.
Allocative Efficiency: Cumulative Gains from Trade After N traders have arrived, with NB choosing to buy and Ns choosing to sell, the ex-post cumulative gain across all agents is: Trading Gain to Society (TGS)
Maximum Allocative Efficiency • Note that allocative efficiency is maximized if all those with • ρi > c purchase an additional unit of the asset • ρi < -c sell their endowed unit of the asset • |ρi| < c do not trade • If c= 0, it is welfare maximizing for every trader to transact • We assume c=0 for our analysis • For a given distribution of ρi, maximized gains from trade is:
Price Discovery • In the GM framework, some traders know true value, V. • Market values are the conditional expected values of V, based on public information, including the trade history. • We measure |E(V) – V| by trading round. • Smaller average values indicate faster price discovery.
Trading in a GM Framework • Does not provide the maximum possible allocative efficiency. • Gives semi-strong form, but not strong-form efficiency. • (1) A spread wider than the social cost of completing trades dissuades efficient trading. • The information asymmetry component of the spread. • Any market power that leads to wider spreads. • (2) Price does not equal fundamental value until a sufficient number of informed have traded. • Informed traders will sometimes transact in the “wrong” direction. • We assess how the maximum spread rule can mitigate these effects.
Points of Comparison (1) Competitive market making. (expected profit conditional on a trade is zero – the actual GM setting). (2) Profit maximizing monopolist market making. We impose a maximum spread rule in each setting, and assess: • Whether allocative efficiency is improved. • Whether price discovery is affected.
Simulation of the GM market • Each simulation consists of 50 potential traders • Informed traders – know the true V • Uninformed traders; V = 1 or V = 2 with equal initial probability, with Bayesian updating. • Early rounds -- a market in the wake of an information event • Later rounds -- a market in more tranquil conditions • Repeated 10,000 times, and average outcomes recorded • The subjective preference parameter ρi is normally distributed with zero mean and σρ= 0.2 • The proportion of informed traders is determined endogenously • marginal informed trader just expects to recover the fixed cost of becoming informed (10% of E(V))
Main Results of the Simulations • (1) Allocative Efficiency is improved by a maximum spread rule. • (2) The speed of price discovery is increased, but only when we allow more traders to choose to become informed. • (3) Imposing the rule in an otherwise competitive market imposes losses on the DMM, and will require a side payment. • (4) Imposing the rule on a monopolist market maker also improves efficiency, and the outcome can dominate competitive market making.
Why are these results important? (1) Testable Implication: A designated market maker with a maximum spread constraint is most effective when: • the information asymmetry cost of market making is large. • not, per se, for illiquid stocks with high marginal social cost of providing liquidity. (2) The maximum spread rule is an example of a market solution to a market imperfection. (3) Having a designated market maker with market power (and constrained by a spread rule) can be an efficient market design (e.g., NYSE).
Extensions • Microstructure settings other than Glosten-Milgrom. • Optimal form of affirmative obligations. • Optimal Compensation Structures.