250 likes | 346 Views
"Environmented" electronic systems. Deposited clusters or molecules: on rare gas surface -> " soft-landing " Fe N @ Ru via Ar [Lau et al., Low Temp. Phys. (2003)] thymine @ Ar @ Pt [Levesque et al., Nucl. Instr. Meth. Phys. Res. (2003)]
E N D
"Environmented" electronic systems • Deposited clusters or molecules: • on rare gas surface -> "soft-landing" • FeN @ Ru via Ar • [Lau et al., Low Temp. Phys. (2003)] • thymine @ Ar @ Pt • [Levesque et al., Nucl. Instr. Meth. Phys. Res. (2003)] • on oxides (MgO,ZnO,Al2O3,…) -> catalysis studies
"Environmented" electronic systems • Embedded clusters • in rare gas droplets • -> control of • temperature,size • [Bartelt et al., PRL (1996)] Ag3+ @ Ar • in rare gas matrices • -> "inert" (?) environment • [Lecoultre et al., JCP (2007)] • [Bonacic-Koutecky et al.,JCP (1999)] free Ag3+
Dynamics of extended systems Dynamics model-potential (frozen) electrons Car-Parrinello MD All classical charge creation MM / QM(TDDFT) TDDFT-MD MM/QM(TDCI) TDCI Environment Electrons e- quantal but small systems environment e- excitation charge creation e- quantal but in ground state electronic excitation How ??
static parameters • staticpolarization • no e- response of MM Standard QM/MM QM: quantum chemistry MM: classical force fields stretching folding twist electrostatic d+ d- Van der Waals
Generalized MM: explicit dynamical dipoles e- response from MM x no e- emission Generalized QM/MM NaN Electrons • VdW • ab initio + • fine-tuning soft Coulomb Rion Ar, Ne, Kr MgO DAr RMg2+ RAr add new terms in Uext RO2- • Lennard-Jones • soft Coulomb • oscillators DO2- • Buckingam • soft Coulomb • oscillators frozen cores Madelung potential
(Time-resolved) observables During or after cluster deposition, laser irradiation, … from electrons: • dipole response (-> spectral analysis) • ionization • number of emitted e- • kinetic E spectrum of emitted e- • angular distribution of emitted e- from ions: • potential and kinetic (temperature) E • global deformation and shape from matrix: • potential and kinetic (temperature) E • global deformation and shape • internal excitation (dipoles)
I II Guided tour example of deposition Cluster properties Optical response Photoelectrons III Deposition dynamics Energies Site deposition Role of charges Matrix properties Global excitation Internal excitation
z y x Optical response Na6 on MgO(100) oblate Na8 in Ar164 short–range compression long –range polarization final blue-shift broken x-y degeneracy g geometry Laudau fragmentation g core repulsion subtle balance core repulsion vs. polarization attraction
Polarization Caution: "heliumblue-shift" Exp: Rostock Compression Optical response embedded clusters Rare gas not that inert…
Photoelectron angular distributions w=5.44 eV laser pol. Na8 IP=-4.3 eV I = 109 Wcm-2 FWHM = 20 fs MgO (or Ar) no problem of orientation no state dependence !
Photoelectron angular distributions free orientated Na8 state PAD, w=2.6 eV No orientation problem but… complex interactions with surface ! Na8 @ MgO total PAD, 3 w suppression towards surface Na8 @ Ar total PAD, 2 w
Cluster Electrons Ions Matrix Cores Shells I II Guided tour example of deposition Cluster properties Optical response Photoelectrons III Deposition dynamics Energies Site deposition Role of charges Matrix properties Global excitation Internal excitation
Na+ @ Ar384 Ekin0= 136 meV Charged atom deposition Inclusion of Na+ in a dynamically created Ar vacancy fixed layers Na: slight minimum Na+: deep minimum thanks to Ar vacancy
Deposition of Na dimers • Na+ @ Ar384 • Na @ Na+/Ar383 Na2+ @ Ar384 Na2 @ Ar384 more robust attachment when charged
Cluster Electrons Ions Matrix Cores Shells I II Guided tour example of deposition Cluster properties Optical response Photoelectrons III Deposition dynamics Energies Site deposition Role of charges Matrix properties Global excitation Internal excitation
Dipole d.o.f Na6 deposition, Ekin0 = 136 meV/ion fixed Ar cores fixed Ar dipoles full Ar dynamical dipoles = crucial ingredient for cluster dynamics
Ar electronic response Na6+ Na+ Eexcµ d2 Ekin0 = 136 meV/ion at impact… 16 meV 9 meV Na+ Na6+ charge effect >> size effect Na6 Na 0.2 meV 1.2 meV Na Na6
Time evolution of dipoles Ekin0 = 6.8 eV NaQ @Ar Ekin0 = 136 meV Q= 0, +1, -1 NaQ Ar atoms Ar dipoles Q= -1 Q= 0 Q= +1 • Important effect of charge • Q = 0 ahigh Ar excitation energy • Threshold for reflection: • factor 20 between Na+ and Na Dipoles ?
Dipole localization Na6+@Ar384 Ekin0 = 800 meV/ion Impact Radial dipole distribution at different times Initial • Localized excitation • Sizeable dipole "noise" • Moderate time evolution Longer time
Conclusion and perspectives • Clusters and molecules @ environment • Hierarchical approach for a generalized QM/MM • Nan@Ar,Ne,Kr done • Nan@MgO done • dynamical electronic response of substrate • Nan@MgO with defects in progress • C,N,O,H @ H2O in near future • C,N,O,H @ H2O @ rare gas in future M. Farizon L. Sanche
Context and motivations • Clusters deposited on surface embedded in matrix (nano)technologies surface engineering Exp Theory free • Particular interest: raregas substrates (Ne, Ar, Kr) • « soft-landing » • AgN @ Pt(111) via Ar • Bromann et al., Science 274, (1996) 956 • FeN @ Ru(001) via Ar • Lau et al., Low Temp. Phys. 29 (2003) 296
Context and motivations AgN+ codeposited with Ar @Au Harbich et al., PRB 76 (2007) 104306 fluorescence Ag1@Ar • NeutralizationofAgN+by • e-fromAu then • goingthrough Ar • non trivial electroniceffect of Ar matrix luminescence Ag1+@Ar@Au
Na6 deposited on MgO structure mismatch energy dependence site dependence
Réponse optique Na8@Ar434 Na83+@Ar434 hw = 1.9 eV I = 2×1012 W.cm-2 Δt = 50 fs (FWHM) initial • élargissement vers le rouge • en accord avec exp Seifert et al., Appl. Phys. B 71 (2000) 795