1 / 51

ELI Summer School, 29.8.2019

Plasma P hysics and Laser-Plasma Interaction C. Riconda LULI, Sorbonne Université , Paris, FRANCE. ELI Summer School, 29.8.2019. Plasma in a nutshell Lasers interacting with plasma /matter Simulation of laser-plasma interaction (LPI)

thadine
Download Presentation

ELI Summer School, 29.8.2019

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plasma Physics and Laser-Plasma InteractionC. RicondaLULI, Sorbonne Université, Paris, FRANCE ELI Summer School, 29.8.2019

  2. Plasma in a nutshell • Lasers interacting with plasma/matter • Simulation of laser-plasma interaction (LPI) • Collective effects – parametricinstabilities (PI) • Twoexampleswhere PI play a role • LPI for InertialConfinement Fusion (ICF) • Plasma Optics – Plasma Amplification • Conclusion/outlook Outline of the talk

  3. Plasma in a nutshell

  4. The 4th state of matter • Ionized gas: positive & negative charges are in some sense «free» particles: • cold plasma neverreally « cold » (1eV = 11605 K) • Πλάσμα (plasma) isthemost abundant form of matter in theuniverse: 99,999% • "In thebeginningthere was plasma. The otherstuffcamelater.“ (Rogoff, Coalitionfor Plasma Science) • Introducedby Langmuir & Tonks in 1929.

  5. The ubiquitousplasma (The 1st state of matter)

  6. Defining a plasma: somebasicparameters  All functions of density ne [in cm-3] andtemperatureTe [in eV] N.B. ne=ni , mi>>me • (electron) plasma frequency: ωpe= (4πnee2/me)1/2 = 5.64 x 104ne1/2 [Hz} • (shielding) Debyelength: λD= (kTe/4πne2)1/2 = 7.43 x 102Te1/2 n−1/2[cm] • (electron-ion) collision frequency: νe = 2.91 x10−6ne ln Λ Te−3/2 [Hz] • (electron) thermal velocity: vTe= (kTe/me)1/2= 4.19 x 107Te1/2 [cm/sec] • average distance: do = ne -1/3 • average potential energy for binary interaction: Epot = e2/do = e2 ne1/3 • average (electron) kinetic energy: Ekin = mevTe2 = k Te

  7. Somederivedparameterstocharacterize a plasma • onedefinitelyneeds for typicalscales: L >> λD & t >> 1/ωpe , 1/ωo • an importantparameteristhenumber of particles in a Debye sphere: • ND≡ (4π/3) ne λD3 >>> 1 • Freeness: Ekin >> Epot  Te >> e2/do=e2ne1/3  ne2/3 Te / e2ne = ND2/3 •  ND >> 1 • Collisionlessness: νe / ωpe ~ 1/ND << 1 • Aplasmaisveryoftendominatedbycollectiveeffects! • Definition of a classicalplasma: fields due to Coulomb binaryinteraction ≈ 0 on average, but collectivemotionandabilitytogeneratemacroscopicfieldsimportant. • ND>>1 canbesatisfiedforwiderange in neandTe

  8. A comment on relativisticandquantumplasmas • relativisticplasmas: Te ~ mec2 ~ 500 keV • quantumeffects: verydense, low-temperatureplasmas, e.g. WDM studies, or • veryintenselaserfields, QED effects • uncertitude in spatialcoordinate: • δr~ ne-1/3 --> δp ne-1/3~ ħ/δr = ħ ne1/3 • For classic descriptionrequire: • δp << <p> ~ (meTe)1/2  • ne << (meTe)3/2/ħ3  ne ≪ 1023Te2/3 • with ne [cm-3] andTe [eV]

  9. Lasers interacting with plasma/matter

  10. Plasma creation & heatingbylaser In a quasi-staticfield • Initial ionization • H-atom: Eion = 13.6 eV • λ = 1 μm Ephoton= 1.2 eV • Electricfield E • Keldyshparameterγ = ωo (2meEion)1/2/eEdistinguishesbetweentunnel (γ << 1) • and multi-photon (γ >> 1) ionization • depends on intensity& wavelength of laserandionizationstage/potential of atom • seedelectronsoscillate in thelaserfield  gain energy  collisionalionization  avalancheprocess  create a plasma

  11. Plasmas interactwithlaserelectromagneticfields • plasmaisensemble of chargedparticleswhicharesubjecttotheoscillating • electromagneticfield of thelaser: • Lorentz-force(field-lineeffect): dp/dt= -e [ E(r,t) + v x B(r,t) ] • becauseofthemassratio, ionmouvementcanbeneglected • First-order approximation collectivequivervelocity of electrons: vosc= eE0/(meω0) , • i.e. neglecting v x B = O(v/c) • Coherentmotion of thelaserinducescoherentmotionofelectrons, enslaved, • e.g. plane wave, linear polarizationparticlesoscillateupand down following E. • Dispersion relationandvphofthewavemodified : onlywaveswithcanpropagate . • Oscillatingelectronscollide with ions & lose orderedenergy (inverse Bremsstrahlung) •  wavseabsorptionandplasmaheating voscII E ωo>ωpe N.B. Relativisticeffects,O(v2/c2),  drift parallel topropagation + figure8 motionforintensitiesabove ~1018 W/cm2

  12. The ponderomotiveforce • Discovered in 1957 by Boot & Harvie in radio-frequency context (Nature180, 1187 (1957)) • Existence of a non-zero time-averagedforce in non-uniform fields (Landau, Mechanics 1940) FPond = − (e2/4meωo2)∇E2 • Ponderomotiveforceis an envelopeeffect*, relatedtothe light pressure, whichexists in: • 1) tranversedirection: kicks awayelectronsfrom high intensityzonesresulting in channeling, • densityperturbations, focusing, sidewayshocks (long-pulse) • 2) propagationdirection: particleacceleration (short-pulse), e.g. wakefield *quadratic in E, needsomewhathighintensity

  13. A real-lifelaser pulse  A laser pulse is not a Heaviside function in time (not even a Gaussian)  Thereisalmostalwaysalready a plasmawhen „your“ pulse arrives  Consequences also for simulation: can not alwaysconsiderthecomplete pulse

  14. High-intensitylaserinteractingwithplasma/matter ‘Underdense’ Plasma : ω0 > ωpe Laser propagatesinside the plasma, volume interaction. ‘Overdense’ Plasma : ω0 < ωpe Relativistic laser Mainly surface interaction Laser pulse • Next we‘llconsidercollectiveeffectsofweaklyor non-relativistic Laser-Plasma-Interaction, • i.e. manyparticlesinteractingin a coherentway in an underdenseplasma‚ ‘long‘ pulse

  15. Simulation of laser-plasma interaction (LPI)

  16. A hierarchy of modelsavailable •  Whysimulationat all ? Things arestronglynonlinearand multi-dimensional; • quantitative aspectsrequiresimulation. • Approach depends on thekind of physicsandcharacteristicscalestobesimulated • E.g.: particlemotion, multi-fluidmodels, 1 fluid model (MHD), kineticmodels • Laser-plasma interactionasweconsiderrequiresrelativistickineticapproach: • VLASOV equation for eachspecies ∂fs/∂t + (p/ms)∂fs/∂x + qs (E + (p/msγ) × B)∂fs/∂p = 0 •  Equationdescribestheevolutionoftheparticlesdistributionfunction • Equationcanbeintegrateddirectlyorsolvedusing a statisticalapproach (numerically) • Verywellsuitedfor high field, relativisticdomain

  17. Particle-in-cellapproach  Idea: initialconditionis a large number of particles with a giventemperaturedistribution - theythenevolveaccordingtothefollowingequations (Maxwell + Newton) Electromagnetic field ∇× E + ∂B/∂t = 0 ∇× B − (1/c2) ∂E/∂t = μ0J ∇E = ρ/ε0 ∇B = 0 Characteristics of Vlasov-eqn. dxp/dt=up/γp dup/dt= qp (Ep + up × Bp/γp) γp = (1 + p2/(mc)2)1/2 Reality versus simulation L >> λD, ND = O(102...106)  millionsofbillionsofparticleimpossible ! BUT: simulation same for 10 and 10.000 sincecollectivemotion, particles ‘enslaved‘ Constituentrelations for eachcell ρ = Σ qp J = Σ qpup/γp

  18. Computationalaspects: a casestudy from ICF • Need to resolve: 1/ωpe ,1/ωo& 1/ko • Particularcase: • 10 pslaserpropagating in theplasma • forsome 100 microns • (Δx = Δy = 0.18 ko-1 , Δt = 0.18 ωo-1 ; CFL: c Δx ≤ Δt) • 2.4 x 108 computationalcells • 1.4 x 105 time steps • 108...9macro-particles • (a smallfractionofthe real number!) • Order of 500‘000 CPU-hours !! (~1 monthrunning on 600 cores-57 yrs on 1 core) • Producinghundreds of GB data • Multidimensional kineticequationsrequire VERY BIG computers !!!

  19. Collective effectsparametric instabilities

  20. From wavepropagationtodispersion relation • A plasmasupports BOTH transverse electromagneticwaves (e.g. Laser propagatinginsidetheplasma) and longitudinal compressionwaves (electronsorions). Howtocharacterizethesewaves ? • Procedure: Choose governingequations, e.g. fluid eqnsorkineticeqn. Choosebackground (0th-order) (coldorhot, atrestor in mouvement, magnetizedor not) Study responseoftheplasmatosmallelectricorelectromagneticperturbations of the form exp{i(kr– ωt)} Determinedispersion relation, D(ω,k)= 0, andsolve for ω = ω(k) togetpossible combinations of frequency ωandwavevectork Find whichwavesaresupportedbytheplasma, i.e. naturaloscillationmodesoftheplasma* Plasma waves ‘Zoo‘ *analogoustopropagationofelectromagneticwaves in dielectricsω= kc√εorstudyofacousticwaves in gazω = kcs: naturalmodeoftheconsidered medium.

  21. Natural oscillationmodes in a non-magnetizedplasma Onlythree Electromagneticwave (EMW) ω2 = ωp2 + k2 c2  limiting frequency ω >= ωp Electronplasmawave (Langmuir wave, EPW) ω2epw ≈ ω2p + 3 k2epw v2Te ≈ ω2p (1 + 3 k2epw λ2D) Ion-acousticwave (IAW) ωiaw≈ cskiawcs<<vTe ωp = (4πne e2/me)1/2 ; vTe = (kBTe/me)1/2 ; λD = ve/ωp ; cs = (kBTe/mi)1/2  „Un“-naturalmodesare of greatinterestin LPI (seelater) !

  22. Backward, E&M Laser, E&M Wave coupling in a plasma Plasma EP wave ~~~~~~ • Waves in a plasmacancouple: • intensity of oneortwowavescangrow • attheexpenseoftheintensity of another • pre-existingwaveif a resonancecondition • isfulfilled: • ω0 = ω1 + ω2 (energy) • k0 = k1 + k2 (momentum) IA wave ~~~~~~ Decayor Backscattering EPW2 EPW1 ~~~~~~ Laser, E&M Twoplasmondecay ~~~~~~ • 3-wave coupling due to • conservation of energy and • momentum Plasma A classic exemple of Laser-Plasma Interaction (LPI): ParametricInstabilities (PI) Laser loosingitsenergy in favor of otherwaves

  23. ParametricInstabilitygrowth: from noisetocoherentmotion Laser intoplasma Plasma oscillations radiatescattered light Beating of 2 em. Waves ponderomotiveforce particlesintotroughs     Backscattering: fromnoisetocoherentmotion • Bunchingmatches • electrostaticmode • 3 waves resonant • growthofinstability: • generatesstrongerscatteredradiation

  24. TwoexampleswherePI play a role:“fromdetrimental to beneficial"

  25. 1. Example LPI for InertialConfinement Fusion (ICF)

  26. Need of a denseand HOT plasmatohavefusion  Nuclearreaction energy: ΔE = (mi – mf) c2

  27.  morethanonewaytoconfineparticles (plasma): n τ T > 3 x1018eV cm−3 s Andhowtogetthere ?

  28. LMJ Startingnow, onlypartof total energy NIF operating Large-scaleprojectsrelatedtoachievingfusion  Also activeprojects in China, Japan andRussia

  29. Laser Laser Laser Inertialconfinementfusion To heat and compress efficiently the target (plasma) many intense pulses need to be absorbed in the corona for a ‘long’ time ns. Laser Laser Laser How intense canthe laser pulses be?

  30. GOAL : absorbethelaser in the ‚absorptionzone‘. Limitationsaregivenbylaserpropagation in thelong-scaleunderdenseplasma Problem: parametricinstabilityactivityin theplasmacorona Froula et al. PPCF 54124016 (2012) Toavoid all thiskeepintensity `low` Ioλo2≈ 1013-14 Wμm2/cm2

  31.  Ofinterestfor a newfusionschemecalled ‚shockignition‘ ParametricInstabilitiesfor high laserintensity • High laserintensities but onlyforsome 10s ps: • Ioλo2≈ 1015...16 Wμm2/cm2 • longunderdenseplasmas: mm-scale • high temperatures: fewkeV •  stronglynonlinearprocesses (kinetics !) • an intricateinterplayofparametricinstabilities • SRS, SBS, LDI, TPD, filamentation& cavitation • a bigissue: hotelectronscreation

  32. Propagation ofthelaserstronglyaffectedbecauseofparametricinstabilities • Depending on Tedifferent instabilitiesruntheshow, strong backscattering • Goodchoiceofparameters: creationofhot, not toohoteIectron, efficentlaserabsorption A bigkineticsimulationfor Laser Plasma Interaction Laser intensity Laser intensity Density laser Laser depletion Initially, backscattered Randon Phase Plate effect, bettertransmission Cavitation • Significantabsorptionandhotelectronscreation BEFORE theabsorptionzone • CONCLUSION: PI areveryimportantfor ICF/SI, • need a verygoodunderstanding

  33. 2. Example Plasma Optics –Plasma Amplification

  34.  sinceinventionoflaser: constantpush towards increasingfocusedintensity ofthe light pulses High-intensity laser in time and space UHI light infrastructures in theworld from ICUIL 2011

  35. Chirped pulse amplification D. Strickland, G. Mourou, OpticsComm. 55, 219 (1985) G.A. Mourou et al., Phys. Today 51, 22 (1998) ⇒ ionisation intensity-limit: I ≤ 1012 W/cm2 ⇒ damage threshold of gratings: ≤ 1 J/cm2 ⇒ 1 EW & 10 fs → 10 kJ →surfaceareas of order 104 cm2 = 1m x 1m ⇒ difficult to produce and veryexpensive Laser-induceddamageofopticalcoatings The problem of damagethreshold for opticalmaterials  PLASMA OPTICS -> focus on plasmabasedlaseramplification

  36. ”NO” damagethresholdin plasmas high-energy long pump  low-intensityshortseed Standard parametricinstabilities : 3 wavecouplingwherethe plasmaresponseistakenupby • electronplasmawave −→ Raman • ion-acousticwave −→ Brillouin conservationequations • ωpump = ωseed+ ωplasma • kpump= kseed + kplasma time scales • Brillouinτs ≥ ωcs-1 ∼ 1 − 10 ps • Ramanτs ≥ ωpe−1 ∼ 5 − 10 fs pump   seed The basicprinciple of plasmaamplification interaction  amplifiedseed depleted pump  Raman allowshigherintensitysince contraction to shorterscales

  37. in contrasttobefore: sc-SBS isa non-resonant mode(not an eigen-mode) • Whenthelaserintensityisabove a tresholdthatdepends on theplasmatemperature, transitionfrom eigen-mode regime  quasi-mode regimecharacterizedby: • ωsc = (1 + i √3) 3.6 x 10-2 (I14 λ2o )1/3 (Zme/mi)1/3 (ne/nc)1/3 • i.e. pump wave (laser) determinesthepropertiesoftheelectrostaticwave ! • instabilitygrowth rate: γsc = Im(ωsc) • New characteristic time scalefor IAW: ~ 1/γsc  canbe a few 10s offs !! • More compression = higherintensity, andsomeadvantageswithrespectto Raman Brillouin in the strong-couplingregime (sc-SBS)

  38. amplificationprocesshastobeoptimised in concurrencewithotherplasmainstabilities! 1) avoidfilamentationfor pump andseed: τp,s/(1/γfil) < 1with γfil/ωo≈ 10-5 I14 λ2[μm](ne/nc) → upperlimitforτp & plasmaamplifierlength; Competing instabilities τpump = 300 fs ok forinstability But not muchenergytransfert τpump = O(10ps) toolongforthegivendensity

  39. 2) avoidSRS ifpossible:τp/(1/γsrs) < 1 with γsrs/ωo ≈ 4.3 x 10−3 √(I14 λ2[μm]) (ne/nc)1/4 • → 1/γsrs ≈ 25 fs !! • BUT canbecontrolledbyplasmaprofileandtemperature, associatedenergylossessmall • Other limitrelatedtoefficencyofenergytransfer: (1/γsc) ∼ τwb→ amax = vosc/c ≈ √(mi/Zme) (ne/nc) • → for ne = 0.05 nc get Imax ≈ 1018W/cm2 Competing instabilities cont’d • Fromtheseconsiderationoneobtains a parameterspaceofoperation • Optimizationisrequiredwrttoplasmaprofile, seedduration, pump intensities • Requires extensive 2D kineticsimulationwork

  40. Video on 1D* plasmaamplificationusing a PIC code * 1D simulation fullyreliable, once transverse filamentationinstabilityiscontrolled

  41. Ep = 2 J, Ip = 6.5 x 1016W/cm2 • τp = 3.5 ps • Es = 15mJ, Is = 5 x 1015W/cm2 • τs = 400 fs • pump & seed cross under angle • interactionlength: ≈ 100 μm • energyuptake of seed 45 mJ • amplification factor of 35 • (Is/Is0) achieved • pump depletionachieved ! • (100% on trajectory) • crossedpolarization ⇒ NO • amplification Experimental proof  L. Lancia et al. PRL (2010, 2016)

  42. Recordenergytransferbyscan in seedintensity Experimentconfirmed by theory and 3D simulations : optimum intensity Is ~ few % Ip • System enters more quicklyinto efficient self-similarregime • Favorspumpdepletionform the beginning : 2 Jenergy exchange and highestintensity gain.  J.R. Marquèset al. PRX (2019)

  43. 2D PIC simulationofamplificationover a large focalspot Possibility of quasi-relativisticintensity over large focal spot ( ~100 microns)!

  44. Tofocustheamplified pulse plasmaoptics • focusingplasmamirror Plasma focusingmirror– plasmalens Nakatsutsumi 2010 • plasmalensbased on relativisticself-focusing: • anothercontrolledinstabilityusage • 10PW focusing: • combiningconventionalmirror • plasmamirrorin 2-stage process Bin 2014

  45. Plasma amplification: a longterm perspective       The futureof UHI light pulse generation ?!

  46. Conclusion/outlook

  47. Conclusions Plasma physicsand LPI : many open questions/problems, theyareanything but simple research ! There is a multitude of researchtopics in thefield; onlytwowerepresented. Important also macroscopiceffectse.g. nonlocaltransport, whichisbigchapteroflaser-plasma interaction. LPI for high intensities also farfromunderstood Experiment andtheory/simulation will havetogohand in hand !!

  48. Thanks/Díky

  49. analysisofsingle hot-spot forstandard ICF conditions • in sc-regime reflectivitycanexhibit large oscillations (pulsationregime), whichcan • berelatedtocavitationandsolitonformation •  backscatteredBrillouinpulsesarestronglyamplified in an uncontrolledway Relation to ICF  Idea: makethetransition from randomprocessestocontrolledenvironment

  50. Manypossiblecouplingprocesses  3-wave resonant decayprocesses in laser-plasma interaction emw emw + epw (stimulated Raman scattering, SRS) emw emw + iaw(stimulatedBrillouinscattering, SBS) emw epw + epw (two-plasmon decayinstability, TPD) epw  epw + iaw(Langmuir decayinstability, LDI) emw epw + iaw (parametricdecayinstability) epw  emw + iaw (electromagneticdecayinstability) iaw  iaw + iaw (twoionwavedecay) TPD • othernonlinearprocesses: filamentation, self-focusing, modulationalinstability etc. etc.

More Related