510 likes | 695 Views
Plasma P hysics and Laser-Plasma Interaction C. Riconda LULI, Sorbonne Université , Paris, FRANCE. ELI Summer School, 29.8.2019. Plasma in a nutshell Lasers interacting with plasma /matter Simulation of laser-plasma interaction (LPI)
E N D
Plasma Physics and Laser-Plasma InteractionC. RicondaLULI, Sorbonne Université, Paris, FRANCE ELI Summer School, 29.8.2019
Plasma in a nutshell • Lasers interacting with plasma/matter • Simulation of laser-plasma interaction (LPI) • Collective effects – parametricinstabilities (PI) • Twoexampleswhere PI play a role • LPI for InertialConfinement Fusion (ICF) • Plasma Optics – Plasma Amplification • Conclusion/outlook Outline of the talk
The 4th state of matter • Ionized gas: positive & negative charges are in some sense «free» particles: • cold plasma neverreally « cold » (1eV = 11605 K) • Πλάσμα (plasma) isthemost abundant form of matter in theuniverse: 99,999% • "In thebeginningthere was plasma. The otherstuffcamelater.“ (Rogoff, Coalitionfor Plasma Science) • Introducedby Langmuir & Tonks in 1929.
Defining a plasma: somebasicparameters All functions of density ne [in cm-3] andtemperatureTe [in eV] N.B. ne=ni , mi>>me • (electron) plasma frequency: ωpe= (4πnee2/me)1/2 = 5.64 x 104ne1/2 [Hz} • (shielding) Debyelength: λD= (kTe/4πne2)1/2 = 7.43 x 102Te1/2 n−1/2[cm] • (electron-ion) collision frequency: νe = 2.91 x10−6ne ln Λ Te−3/2 [Hz] • (electron) thermal velocity: vTe= (kTe/me)1/2= 4.19 x 107Te1/2 [cm/sec] • average distance: do = ne -1/3 • average potential energy for binary interaction: Epot = e2/do = e2 ne1/3 • average (electron) kinetic energy: Ekin = mevTe2 = k Te
Somederivedparameterstocharacterize a plasma • onedefinitelyneeds for typicalscales: L >> λD & t >> 1/ωpe , 1/ωo • an importantparameteristhenumber of particles in a Debye sphere: • ND≡ (4π/3) ne λD3 >>> 1 • Freeness: Ekin >> Epot Te >> e2/do=e2ne1/3 ne2/3 Te / e2ne = ND2/3 • ND >> 1 • Collisionlessness: νe / ωpe ~ 1/ND << 1 • Aplasmaisveryoftendominatedbycollectiveeffects! • Definition of a classicalplasma: fields due to Coulomb binaryinteraction ≈ 0 on average, but collectivemotionandabilitytogeneratemacroscopicfieldsimportant. • ND>>1 canbesatisfiedforwiderange in neandTe
A comment on relativisticandquantumplasmas • relativisticplasmas: Te ~ mec2 ~ 500 keV • quantumeffects: verydense, low-temperatureplasmas, e.g. WDM studies, or • veryintenselaserfields, QED effects • uncertitude in spatialcoordinate: • δr~ ne-1/3 --> δp ne-1/3~ ħ/δr = ħ ne1/3 • For classic descriptionrequire: • δp << <p> ~ (meTe)1/2 • ne << (meTe)3/2/ħ3 ne ≪ 1023Te2/3 • with ne [cm-3] andTe [eV]
Plasma creation & heatingbylaser In a quasi-staticfield • Initial ionization • H-atom: Eion = 13.6 eV • λ = 1 μm Ephoton= 1.2 eV • Electricfield E • Keldyshparameterγ = ωo (2meEion)1/2/eEdistinguishesbetweentunnel (γ << 1) • and multi-photon (γ >> 1) ionization • depends on intensity& wavelength of laserandionizationstage/potential of atom • seedelectronsoscillate in thelaserfield gain energy collisionalionization avalancheprocess create a plasma
Plasmas interactwithlaserelectromagneticfields • plasmaisensemble of chargedparticleswhicharesubjecttotheoscillating • electromagneticfield of thelaser: • Lorentz-force(field-lineeffect): dp/dt= -e [ E(r,t) + v x B(r,t) ] • becauseofthemassratio, ionmouvementcanbeneglected • First-order approximation collectivequivervelocity of electrons: vosc= eE0/(meω0) , • i.e. neglecting v x B = O(v/c) • Coherentmotion of thelaserinducescoherentmotionofelectrons, enslaved, • e.g. plane wave, linear polarizationparticlesoscillateupand down following E. • Dispersion relationandvphofthewavemodified : onlywaveswithcanpropagate . • Oscillatingelectronscollide with ions & lose orderedenergy (inverse Bremsstrahlung) • wavseabsorptionandplasmaheating voscII E ωo>ωpe N.B. Relativisticeffects,O(v2/c2), drift parallel topropagation + figure8 motionforintensitiesabove ~1018 W/cm2
The ponderomotiveforce • Discovered in 1957 by Boot & Harvie in radio-frequency context (Nature180, 1187 (1957)) • Existence of a non-zero time-averagedforce in non-uniform fields (Landau, Mechanics 1940) FPond = − (e2/4meωo2)∇E2 • Ponderomotiveforceis an envelopeeffect*, relatedtothe light pressure, whichexists in: • 1) tranversedirection: kicks awayelectronsfrom high intensityzonesresulting in channeling, • densityperturbations, focusing, sidewayshocks (long-pulse) • 2) propagationdirection: particleacceleration (short-pulse), e.g. wakefield *quadratic in E, needsomewhathighintensity
A real-lifelaser pulse A laser pulse is not a Heaviside function in time (not even a Gaussian) Thereisalmostalwaysalready a plasmawhen „your“ pulse arrives Consequences also for simulation: can not alwaysconsiderthecomplete pulse
High-intensitylaserinteractingwithplasma/matter ‘Underdense’ Plasma : ω0 > ωpe Laser propagatesinside the plasma, volume interaction. ‘Overdense’ Plasma : ω0 < ωpe Relativistic laser Mainly surface interaction Laser pulse • Next we‘llconsidercollectiveeffectsofweaklyor non-relativistic Laser-Plasma-Interaction, • i.e. manyparticlesinteractingin a coherentway in an underdenseplasma‚ ‘long‘ pulse
A hierarchy of modelsavailable • Whysimulationat all ? Things arestronglynonlinearand multi-dimensional; • quantitative aspectsrequiresimulation. • Approach depends on thekind of physicsandcharacteristicscalestobesimulated • E.g.: particlemotion, multi-fluidmodels, 1 fluid model (MHD), kineticmodels • Laser-plasma interactionasweconsiderrequiresrelativistickineticapproach: • VLASOV equation for eachspecies ∂fs/∂t + (p/ms)∂fs/∂x + qs (E + (p/msγ) × B)∂fs/∂p = 0 • Equationdescribestheevolutionoftheparticlesdistributionfunction • Equationcanbeintegrateddirectlyorsolvedusing a statisticalapproach (numerically) • Verywellsuitedfor high field, relativisticdomain
Particle-in-cellapproach Idea: initialconditionis a large number of particles with a giventemperaturedistribution - theythenevolveaccordingtothefollowingequations (Maxwell + Newton) Electromagnetic field ∇× E + ∂B/∂t = 0 ∇× B − (1/c2) ∂E/∂t = μ0J ∇E = ρ/ε0 ∇B = 0 Characteristics of Vlasov-eqn. dxp/dt=up/γp dup/dt= qp (Ep + up × Bp/γp) γp = (1 + p2/(mc)2)1/2 Reality versus simulation L >> λD, ND = O(102...106) millionsofbillionsofparticleimpossible ! BUT: simulation same for 10 and 10.000 sincecollectivemotion, particles ‘enslaved‘ Constituentrelations for eachcell ρ = Σ qp J = Σ qpup/γp
Computationalaspects: a casestudy from ICF • Need to resolve: 1/ωpe ,1/ωo& 1/ko • Particularcase: • 10 pslaserpropagating in theplasma • forsome 100 microns • (Δx = Δy = 0.18 ko-1 , Δt = 0.18 ωo-1 ; CFL: c Δx ≤ Δt) • 2.4 x 108 computationalcells • 1.4 x 105 time steps • 108...9macro-particles • (a smallfractionofthe real number!) • Order of 500‘000 CPU-hours !! (~1 monthrunning on 600 cores-57 yrs on 1 core) • Producinghundreds of GB data • Multidimensional kineticequationsrequire VERY BIG computers !!!
From wavepropagationtodispersion relation • A plasmasupports BOTH transverse electromagneticwaves (e.g. Laser propagatinginsidetheplasma) and longitudinal compressionwaves (electronsorions). Howtocharacterizethesewaves ? • Procedure: Choose governingequations, e.g. fluid eqnsorkineticeqn. Choosebackground (0th-order) (coldorhot, atrestor in mouvement, magnetizedor not) Study responseoftheplasmatosmallelectricorelectromagneticperturbations of the form exp{i(kr– ωt)} Determinedispersion relation, D(ω,k)= 0, andsolve for ω = ω(k) togetpossible combinations of frequency ωandwavevectork Find whichwavesaresupportedbytheplasma, i.e. naturaloscillationmodesoftheplasma* Plasma waves ‘Zoo‘ *analogoustopropagationofelectromagneticwaves in dielectricsω= kc√εorstudyofacousticwaves in gazω = kcs: naturalmodeoftheconsidered medium.
Natural oscillationmodes in a non-magnetizedplasma Onlythree Electromagneticwave (EMW) ω2 = ωp2 + k2 c2 limiting frequency ω >= ωp Electronplasmawave (Langmuir wave, EPW) ω2epw ≈ ω2p + 3 k2epw v2Te ≈ ω2p (1 + 3 k2epw λ2D) Ion-acousticwave (IAW) ωiaw≈ cskiawcs<<vTe ωp = (4πne e2/me)1/2 ; vTe = (kBTe/me)1/2 ; λD = ve/ωp ; cs = (kBTe/mi)1/2 „Un“-naturalmodesare of greatinterestin LPI (seelater) !
Backward, E&M Laser, E&M Wave coupling in a plasma Plasma EP wave ~~~~~~ • Waves in a plasmacancouple: • intensity of oneortwowavescangrow • attheexpenseoftheintensity of another • pre-existingwaveif a resonancecondition • isfulfilled: • ω0 = ω1 + ω2 (energy) • k0 = k1 + k2 (momentum) IA wave ~~~~~~ Decayor Backscattering EPW2 EPW1 ~~~~~~ Laser, E&M Twoplasmondecay ~~~~~~ • 3-wave coupling due to • conservation of energy and • momentum Plasma A classic exemple of Laser-Plasma Interaction (LPI): ParametricInstabilities (PI) Laser loosingitsenergy in favor of otherwaves
ParametricInstabilitygrowth: from noisetocoherentmotion Laser intoplasma Plasma oscillations radiatescattered light Beating of 2 em. Waves ponderomotiveforce particlesintotroughs Backscattering: fromnoisetocoherentmotion • Bunchingmatches • electrostaticmode • 3 waves resonant • growthofinstability: • generatesstrongerscatteredradiation
TwoexampleswherePI play a role:“fromdetrimental to beneficial"
1. Example LPI for InertialConfinement Fusion (ICF)
Need of a denseand HOT plasmatohavefusion Nuclearreaction energy: ΔE = (mi – mf) c2
morethanonewaytoconfineparticles (plasma): n τ T > 3 x1018eV cm−3 s Andhowtogetthere ?
LMJ Startingnow, onlypartof total energy NIF operating Large-scaleprojectsrelatedtoachievingfusion Also activeprojects in China, Japan andRussia
Laser Laser Laser Inertialconfinementfusion To heat and compress efficiently the target (plasma) many intense pulses need to be absorbed in the corona for a ‘long’ time ns. Laser Laser Laser How intense canthe laser pulses be?
GOAL : absorbethelaser in the ‚absorptionzone‘. Limitationsaregivenbylaserpropagation in thelong-scaleunderdenseplasma Problem: parametricinstabilityactivityin theplasmacorona Froula et al. PPCF 54124016 (2012) Toavoid all thiskeepintensity `low` Ioλo2≈ 1013-14 Wμm2/cm2
Ofinterestfor a newfusionschemecalled ‚shockignition‘ ParametricInstabilitiesfor high laserintensity • High laserintensities but onlyforsome 10s ps: • Ioλo2≈ 1015...16 Wμm2/cm2 • longunderdenseplasmas: mm-scale • high temperatures: fewkeV • stronglynonlinearprocesses (kinetics !) • an intricateinterplayofparametricinstabilities • SRS, SBS, LDI, TPD, filamentation& cavitation • a bigissue: hotelectronscreation
Propagation ofthelaserstronglyaffectedbecauseofparametricinstabilities • Depending on Tedifferent instabilitiesruntheshow, strong backscattering • Goodchoiceofparameters: creationofhot, not toohoteIectron, efficentlaserabsorption A bigkineticsimulationfor Laser Plasma Interaction Laser intensity Laser intensity Density laser Laser depletion Initially, backscattered Randon Phase Plate effect, bettertransmission Cavitation • Significantabsorptionandhotelectronscreation BEFORE theabsorptionzone • CONCLUSION: PI areveryimportantfor ICF/SI, • need a verygoodunderstanding
2. Example Plasma Optics –Plasma Amplification
sinceinventionoflaser: constantpush towards increasingfocusedintensity ofthe light pulses High-intensity laser in time and space UHI light infrastructures in theworld from ICUIL 2011
Chirped pulse amplification D. Strickland, G. Mourou, OpticsComm. 55, 219 (1985) G.A. Mourou et al., Phys. Today 51, 22 (1998) ⇒ ionisation intensity-limit: I ≤ 1012 W/cm2 ⇒ damage threshold of gratings: ≤ 1 J/cm2 ⇒ 1 EW & 10 fs → 10 kJ →surfaceareas of order 104 cm2 = 1m x 1m ⇒ difficult to produce and veryexpensive Laser-induceddamageofopticalcoatings The problem of damagethreshold for opticalmaterials PLASMA OPTICS -> focus on plasmabasedlaseramplification
”NO” damagethresholdin plasmas high-energy long pump low-intensityshortseed Standard parametricinstabilities : 3 wavecouplingwherethe plasmaresponseistakenupby • electronplasmawave −→ Raman • ion-acousticwave −→ Brillouin conservationequations • ωpump = ωseed+ ωplasma • kpump= kseed + kplasma time scales • Brillouinτs ≥ ωcs-1 ∼ 1 − 10 ps • Ramanτs ≥ ωpe−1 ∼ 5 − 10 fs pump seed The basicprinciple of plasmaamplification interaction amplifiedseed depleted pump Raman allowshigherintensitysince contraction to shorterscales
in contrasttobefore: sc-SBS isa non-resonant mode(not an eigen-mode) • Whenthelaserintensityisabove a tresholdthatdepends on theplasmatemperature, transitionfrom eigen-mode regime quasi-mode regimecharacterizedby: • ωsc = (1 + i √3) 3.6 x 10-2 (I14 λ2o )1/3 (Zme/mi)1/3 (ne/nc)1/3 • i.e. pump wave (laser) determinesthepropertiesoftheelectrostaticwave ! • instabilitygrowth rate: γsc = Im(ωsc) • New characteristic time scalefor IAW: ~ 1/γsc canbe a few 10s offs !! • More compression = higherintensity, andsomeadvantageswithrespectto Raman Brillouin in the strong-couplingregime (sc-SBS)
amplificationprocesshastobeoptimised in concurrencewithotherplasmainstabilities! 1) avoidfilamentationfor pump andseed: τp,s/(1/γfil) < 1with γfil/ωo≈ 10-5 I14 λ2[μm](ne/nc) → upperlimitforτp & plasmaamplifierlength; Competing instabilities τpump = 300 fs ok forinstability But not muchenergytransfert τpump = O(10ps) toolongforthegivendensity
2) avoidSRS ifpossible:τp/(1/γsrs) < 1 with γsrs/ωo ≈ 4.3 x 10−3 √(I14 λ2[μm]) (ne/nc)1/4 • → 1/γsrs ≈ 25 fs !! • BUT canbecontrolledbyplasmaprofileandtemperature, associatedenergylossessmall • Other limitrelatedtoefficencyofenergytransfer: (1/γsc) ∼ τwb→ amax = vosc/c ≈ √(mi/Zme) (ne/nc) • → for ne = 0.05 nc get Imax ≈ 1018W/cm2 Competing instabilities cont’d • Fromtheseconsiderationoneobtains a parameterspaceofoperation • Optimizationisrequiredwrttoplasmaprofile, seedduration, pump intensities • Requires extensive 2D kineticsimulationwork
Video on 1D* plasmaamplificationusing a PIC code * 1D simulation fullyreliable, once transverse filamentationinstabilityiscontrolled
Ep = 2 J, Ip = 6.5 x 1016W/cm2 • τp = 3.5 ps • Es = 15mJ, Is = 5 x 1015W/cm2 • τs = 400 fs • pump & seed cross under angle • interactionlength: ≈ 100 μm • energyuptake of seed 45 mJ • amplification factor of 35 • (Is/Is0) achieved • pump depletionachieved ! • (100% on trajectory) • crossedpolarization ⇒ NO • amplification Experimental proof L. Lancia et al. PRL (2010, 2016)
Recordenergytransferbyscan in seedintensity Experimentconfirmed by theory and 3D simulations : optimum intensity Is ~ few % Ip • System enters more quicklyinto efficient self-similarregime • Favorspumpdepletionform the beginning : 2 Jenergy exchange and highestintensity gain. J.R. Marquèset al. PRX (2019)
2D PIC simulationofamplificationover a large focalspot Possibility of quasi-relativisticintensity over large focal spot ( ~100 microns)!
Tofocustheamplified pulse plasmaoptics • focusingplasmamirror Plasma focusingmirror– plasmalens Nakatsutsumi 2010 • plasmalensbased on relativisticself-focusing: • anothercontrolledinstabilityusage • 10PW focusing: • combiningconventionalmirror • plasmamirrorin 2-stage process Bin 2014
Plasma amplification: a longterm perspective The futureof UHI light pulse generation ?!
Conclusions Plasma physicsand LPI : many open questions/problems, theyareanything but simple research ! There is a multitude of researchtopics in thefield; onlytwowerepresented. Important also macroscopiceffectse.g. nonlocaltransport, whichisbigchapteroflaser-plasma interaction. LPI for high intensities also farfromunderstood Experiment andtheory/simulation will havetogohand in hand !!
analysisofsingle hot-spot forstandard ICF conditions • in sc-regime reflectivitycanexhibit large oscillations (pulsationregime), whichcan • berelatedtocavitationandsolitonformation • backscatteredBrillouinpulsesarestronglyamplified in an uncontrolledway Relation to ICF Idea: makethetransition from randomprocessestocontrolledenvironment
Manypossiblecouplingprocesses 3-wave resonant decayprocesses in laser-plasma interaction emw emw + epw (stimulated Raman scattering, SRS) emw emw + iaw(stimulatedBrillouinscattering, SBS) emw epw + epw (two-plasmon decayinstability, TPD) epw epw + iaw(Langmuir decayinstability, LDI) emw epw + iaw (parametricdecayinstability) epw emw + iaw (electromagneticdecayinstability) iaw iaw + iaw (twoionwavedecay) TPD • othernonlinearprocesses: filamentation, self-focusing, modulationalinstability etc. etc.