240 likes | 335 Views
Getting Started: a user’s guide to the GO. GO Workshop 3-6 August 2010. Avian Gene Nomenclature. Provides structural annotation for agriculturally important genomes Provides functional annotation (GO) Provides tools for functional modeling
E N D
Getting Started: a user’s guide to the GO GO Workshop 3-6 August 2010
Avian Gene Nomenclature • Provides structural annotation for agriculturally important genomes • Provides functional annotation (GO) • Provides tools for functional modeling • Provides bioinformatics & modeling support for research community
Introduction to GO • Anatomy of a GO term: a GO annotation example • GO evidence codes • Making annotations: literature biocuration & computation analysis • ND vs no GO • Using the GO • GO tools • Functional modeling considerations
Gene Ontology (GO) • Not about genes! • Gene products: genes, transcripts, ncRNA, proteins • The GO describes gene product function • Not a single ontology • Biological Process (BP or P) • Molecular Function (MF or F) • Cellular Component (CC or C)
What is the Gene Ontology? assign functions to gene products at different levels, depending on how much is known about a gene product is used for a diverse range of species structured to be queried at different levels, eg: find all the chicken gene products in the genome that are involved in signal transduction zoom in on all the receptor tyrosine kinases human readable GO function has a digital tag to allow computational analysis of large datasets “a controlled vocabulary that can be applied to all organisms even as knowledge of gene and protein roles in cells is accumulating and changing” COMPUTATIONALLY AMENABLE ENCYCLOPEDIA OF GENE FUNCTIONS AND THEIR RELATIONSHIPS
Ontologies relationships between terms digital identifier (computers) description (humans) As of ontology version 1.1348 (27/07/2010): 32,091 terms, 99.3% defined * 19169 biological process * 2745 cellular component * 8736 molecular function 1441 obsolete terms (not included in figures above)
NDUFAB1 GO annotation example NDUFAB1 (UniProt P52505) Bovine NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa Biological Process (BP or P) GO:0006633 fatty acid biosynthetic process TAS GO:0006120 mitochondrial electron transport, NADH to ubiquinone TAS GO:0008610 lipid biosynthetic process IEA Molecular Function (MF or F) GO:0005504 fatty acid binding IDA GO:0008137 NADH dehydrogenase (ubiquinone) activity TAS GO:0016491 oxidoreductase activity TAS GO:0000036 acyl carrier activity IEA Cellular Component (CC or C) GO:0005759 mitochondrial matrix IDA GO:0005747 mitochondrial respiratory chain complex I IDA GO:0005739 mitochondrion IEA
GO:ID (unique) aspect or ontology GO evidence code GO term name GO annotation example NDUFAB1 (UniProt P52505) Bovine NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa
Guide to GO Evidence Codes http://www.geneontology.org/GO.evidence.shtml GO EVIDENCE CODES Direct Evidence Codes IDA - inferred from direct assay IEP - inferred from expression pattern IGI - inferred from genetic interaction IMP - inferred from mutant phenotype IPI - inferred from physical interaction Indirect Evidence Codes inferred from literature IGC - inferred from genomic context TAS - traceable author statement NAS - non-traceable author statement IC - inferred by curator inferred by sequence analysis RCA - inferred from reviewed computational analysis IS* - inferred from sequence* IEA - inferred from electronic annotation Other NR - not recorded (historical) ND - no biological data available ISS - inferred from sequence or structural similarity ISA - inferred from sequence alignment ISO - inferred from sequence orthology ISM - inferred from sequence model
NDUFAB1 GO EVIDENCE CODES Direct Evidence Codes IDA - inferred from direct assay IEP - inferred from expression pattern IGI - inferred from genetic interaction IMP - inferred from mutant phenotype IPI - inferred from physical interaction Indirect Evidence Codes inferred from literature IGC - inferred from genomic context TAS - traceable author statement NAS - non-traceable author statement IC - inferred by curator inferred by sequence analysis RCA - inferred from reviewed computational analysis IS* - inferred from sequence* IEA - inferred from electronic annotation Other NR - not recorded (historical) ND - no biological data available GO Mapping Example • Biocuration of literature • detailed function • “depth” • slower (manual)
P05147 PMID: 2976880 Biocuration of Literature: detailed gene function Find a paper about the protein.
Use most specific term possible Read paper to get experimental evidence of function experiment assayed kinase activity: use IDA evidence code
NDUFAB1 GO EVIDENCE CODES Direct Evidence Codes IDA - inferred from direct assay IEP - inferred from expression pattern IGI - inferred from genetic interaction IMP - inferred from mutant phenotype IPI - inferred from physical interaction Indirect Evidence Codes inferred from literature IGC - inferred from genomic context TAS - traceable author statement NAS - non-traceable author statement IC - inferred by curator inferred by sequence analysis RCA - inferred from reviewed computational analysis IS* - inferred from sequence* IEA - inferred from electronic annotation Other NR - not recorded (historical) ND - no biological data available GO Mapping Example • Biocuration of literature • detailed function • “depth” • slower (manual) • Sequence analysis • rapid (computational) • “breadth” of coverage • less detailed ISS - inferred from sequence or structural similarity ISA - inferred from sequence alignment ISO - inferred from sequence orthology ISM - inferred from sequence model
Unknown Function vs No GO • ND – no data • Biocurators have tried to add GO but there is no functional data available • Previously: “process_unknown”, “function_unknown”, “component_unknown” • Now: “biological process”, “molecular function”, “cellular component” • No annotations (including no “ND”): biocurators have not annotated • this is important for your dataset: what % has GO?
Using the GO • Decide on GO analysis tool • How much GO is available for your species? • Getting GO for you data set • Adding GO for your data
However…. • many of these tools do not support non-model organisms • the tools have different computing requirements • may be difficult to determine how up-to-date the GO annotations are… Need to evaluate tools for your system.
Evaluating GO tools Some criteria for evaluating GO Tools: • Does it include my species of interest (or do I have to “humanize” my list)? • What does it require to set up (computer usage/online) • What was the source for the GO (primary or secondary) and when was it last updated? • Does it report the GO evidence codes (and is IEA included)? • Does it report which of my gene products has no GO? • Does it report both over/under represented GO groups and how does it evaluate this? • Does it allow me to add my own GO annotations? • Does it represent my results in a way that facilitates discovery?
Some useful expression analysis tools: • Database for Annotation, Visualization and Integrated Discovery (DAVID) • http://david.abcc.ncifcrf.gov/ • AgriGO -- GO Analysis Toolkit and Database for Agricultural Community • http://bioinfo.cau.edu.cn/agriGO/ • used to be EasyGO • chicken, cow, pig, mouse, cereals, dicots • includes Plant Ontology (PO) analysis • Onto-Express • http://vortex.cs.wayne.edu/projects.htm#Onto-Express • can provide your own gene association file • Funcassociate 2.0: The Gene Set Functionator • http://llama.med.harvard.edu/funcassociate/ • can provide your own gene association file
Functional Modeling Considerations • Should I add my own GO? • use GOProfiler to see how much GO is available for your species • use GORetriever to find existing GO for your dataset • Does analysis tool allow me to add my own GO? • Should I do GO analysis and pathway analysis and network analysis? • different functional modeling methods show different aspects about your data (complementary) • is this type of data available for your species (or a close ortholog)? • What tools should I use? • which tools have data for your species of interest? • what type of accessions are accepted? • availability (commercial and freely available)
Overview of Functional Modeling Strategy Microarray Ids GOModeler hypothesis testing Pathways and network analysis Ingenuity Pathways Analysis (IPA) Pathway Studio Cytoscape DAVID ArrayIDer Protein/Gene identifiers GO Enrichment analysis Ingenuity Pathways Analysis (IPA) Pathway Studio Cytoscape DAVID EasyGO/AgriGO Onto-Express Onto-Express-to-go (OE2GO) GORetriever Genes/Proteins with no GO annotations GO annotations summarizes GO function GOSlimViewer GOanna Yellow boxes represent AgBase tools Green/Purple boxes are non-AgBase resources
For more information about GO • GO Evidence Codes:http://www.geneontology.org/GO.evidence.shtml • gene association file information:http://www.geneontology.org/GO.format.annotation.shtml • tools that use the GO:http://www.geneontology.org/GO.tools.shtml • GO Consortium wiki:http://wiki.geneontology.org/index.php/Main_Page All websites are listed on the AgBase workshop website.