550 likes | 656 Views
Cellular Respiration. Introduction. Before food can be used to perform work, its energy must be released through the process of respiration. Two main types of respiration exist in living things. Both begin with glycolysis.
E N D
Introduction • Before food can be used to perform work, its energy must be released through the process of respiration. • Two main types of respiration exist in living things. Both begin with glycolysis. • Glycolysis: a process by which one glucose molecule is broken down into two pyruvic acid molecules. • Fermentation (anaerobic respiration): pyruvic acid is broken down without the use of oxygen • Oxidative Respiration (aerobic respiration): pyruvic acid is metabolized using oxygen
Glucose Krebs cycle Electrontransport Glycolysis Alcohol or lactic acid Fermentation (without oxygen) Aerobic Respiration Anaerobic Respiration
Glycolysis • Glycolysis occurs in the cytoplasm. • It does not require oxygen. • Each of its four stages is catalyzed by a specific enzyme.
ATP ATP ADP + P ADP + P PGAL PGAL NAD+ + 2 H+ + 2 e- NAD+ + 2 H+ + 2 e- NADH + H+ NADH + H+ PGAL + P PGAL + P 2 ADP + 2 P 2 ADP + 2 P 2 ATP 2 ATP Pyruvic Acid Pyruvic Acid Glycolysis Glucose
Anaerobic Respiration Fermentation
Fermentation (Anaerobic Respiration) • Fermentation is the breakdown of pyruvic acid without the use of oxygen. • Glycolysis + Fermentation = Anaerobic Respiration • The metabolism of pyruvic acid during fermentation does not produce any ATP. Instead, the function of fermentation is to break down pyruvic acid and regenerate NAD+ for reuse in glycolysis.
To Glycolysis Fermentation Lactic Acid Fermentation NADH + H+ NAD+ + 2 H+ + 2 e- Pyruvic Acid Lactic Acid Alcoholic Fermentation NADH + H+ NAD+ + 2 H+ + 2 e- Pyruvic Acid Ethyl Alcohol (Ethanol) CO2
Aerobic Respiration Oxidative Respiration
Aerobic Respiration • The result of glycolysis and aerobic respiration is shown by the reaction: • C6H12O6 + 6 O2 → 6 H2O + 6 CO2 + 38 ATP • Aerobic respiration occurs in the mitochondria • outer and inner membrane • matrix: dense solution enclosed by inner membrane • cristae: the folds of the inner membrane that house the electron transport chain and ATP synthase • Steps: • Conversion of Pyruvic Acid • Kreb’s Cycle • Electron Transport Chain
Kreb’s Cycle • The Krebs Cycle is the central biochemical pathway of aerobic respiration. It is named after its discoverer, Sir Hans Krebs. Because citric acid is formed in the process, it is also known as the Citric Acid Cycle.
Conversion of Pyruvic Acid NADH + H+ Pyruvic Acid C C Acetyl-CoA CoA C C C CO2 CoA C C C C C C C Citric Acid Oxaloacetic Acid C C C C Kreb's Cycle NADH + H+ NADH + H+ C CO2 Ketoglutaric Acid C C C C C Malic Acid C C C C Succinic Acid NADH + H+ FADH2 CO2 C C C C ATP C NAD+ NAD+ NAD+ NAD+ ADP + P FAD
Electron Transport Chain • Glycolysis, the conversion of PA to acetyl-CoA, and the Krebs Cycle complete the breakdown of glucose. • Up to this point: • 4 ATP (2 from glycolysis, 2 from Krebs) • 10 NADH + H+ (2 from glycolysis, 2 from the conversion of PA, 6 from Krebs) • 2 FADH2 (from Krebs)
Electron Transport Chain • NADH + H+ and FADH2 carry electrons to an electron transport chain, where additional ATP is produced. • 10 NADH 30 ATP • 2 FADH2 4 ATP
NADH + H+ FADH2 NAD+ FAD Electron Transport Chain Intermembrane Space Inner Membrane Matrix
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix NADH + H+ FADH2 NAD+ FAD
Electron Transport Chain Intermembrane Space Inner Membrane Matrix ADP + P ~ e ATP NADH + H+ FADH2 NAD+ FAD
Electron Transport Hydrogen Ion Movement Channel Intermembrane Space ATP synthase Inner Membrane Matrix ATP Production