1 / 10

9.3 Geometric Sequences & Series

Discover the essence of geometric sequences, common ratios, and rules for determining nth terms. Learn to identify and graph geometric sequences, solve for missing terms, and calculate the sum of finite series.

Download Presentation

9.3 Geometric Sequences & Series

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 9.3 Geometric Sequences & Series

  2. Geometric Sequence • The ratio of a term to its previous term is constant. • This means you multiply by the same number to get each term. • This number that you multiply by is called the common ratio (r).

  3. 4,-8,16,-32,… -8/4=-2 16/-8=-2 -32/16=-2 Geometric (common ratio is -2) 3,9,-27,-81,243,… 9/3=3 -27/9=-3 -81/-27=3 243/-81=-3 Not geometric Example: Decide whether each sequence is geometric.

  4. Rule for a Geometric Sequence an=a1rn-1 • Example: Write a rule for the nth term of the sequence 5, 2, 0.8, 0.32,… . Then find a8. • First, find r. • r= 2/5 = .4 • an=5(.4)n-1 a8=5(.4)8-1 a8=5(.4)7 a8=5(.0016384) a8=.008192

  5. If a4=3, then when n=4, an=3. Use an=a1rn-1 3=a1(3)4-1 3=a1(3)3 3=a1(27) 1/9=a1 an=a1rn-1 an=(1/9)(3)n-1 To graph, graph the points of the form (n,an). Such as, (1,1/9), (2,1/3), (3,1), (4,3),… Example: One term of a geometric sequence is a4=3. The common ratio is r=3. Write a rule for the nth term. Then graph the sequence.

  6. Example: Two terms of a geometric sequence are a2=-4 and a6=-1024. Write a rule for the nth term. • Write 2 equations, one for each given term. a2=a1r2-1 OR -4=a1r a6=a1r6-1 OR -1024=a1r5 • Use these 2 equations & substitution to solve for a1 & r. -4/r=a1 -1024=(-4/r)r5 -1024=-4r4 256=r4 4=r & -4=r If r=4, then a1=-1. an=(-1)(4)n-1 If r=-4, then a1=1. an=(1)(-4)n-1 an=(-4)n-1 Both Work!

  7. Formula for the Sum of a Finite Geometric Series n = # of terms a1 = 1st term r = common ratio

  8. Find the sum of the first 10 terms. Find n such that Sn=31/4. Example: Consider the geometric series 4+2+1+½+… .

  9. log232=n

  10. Sum of an infinte geometric sum:S= a1 / 1-r

More Related