1 / 22

DIGITAL IMAGE PROCESSING

DIGITAL IMAGE PROCESSING. Instructors: Dr J. Shanbehzadeh Shanbehzadeh@gmail.com M.Gholizadeh mhdgholizadeh@gmail.com. DIGITAL IMAGE PROCESSING. Chapter 5 - Image Restoration and Reconstruction. Instructors: Dr J. Shanbehzadeh Shanbehzadeh@gmail.com M.Gholizadeh

tiara
Download Presentation

DIGITAL IMAGE PROCESSING

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIGITAL IMAGE PROCESSING Instructors: Dr J. Shanbehzadeh Shanbehzadeh@gmail.com M.Gholizadeh mhdgholizadeh@gmail.com

  2. DIGITAL IMAGE PROCESSING Chapter 5 - Image Restoration and Reconstruction Instructors: Dr J. Shanbehzadeh Shanbehzadeh@gmail.com M.Gholizadeh mhdgholizadeh@gmail.com ( J.ShanbehzadehM.Gholizadeh )

  3. Road map of chapter 5 5.5 5.3 5.3 5.8 5.4 5.6 5.1 5.2 5.4 5.5 5.1 5.2 5.8 5.7 5.7 5.6 • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • Estimating the degradation Function • Noise Models • A Model of the Image Degradation/Restoration Process • Minimum Mean Square Error (Wiener) Filtering • Periodic Noise Reduction by Frequency Domain Filtering • Restoration in the Presence of Noise Only-Spatial Filtering • Linear, Position-Invariant Degradations • Inverse Filtering ( J.Shanbehzadeh M.Gholizadeh )

  4. Road map of chapter 5 5.11 5.11 5.9 5.10 5.10 5.9 • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Geometric Mean Filter • Constrained Least Square Filtering • Image Reconstruction from Projections ( J.Shanbehzadeh M.Gholizadeh )

  5. Preview • Goal of Restoration: Improve Image Quality Example Degraded Image Develop Degradation Model Develop Inverse Degradation Process Knowledge Of Image Creation Process Input Image d (r,c ) Output Image I(r,c ) Apply Inverse Degradation Process ( J.Shanbehzadeh M.Gholizadeh )

  6. Preview • Restoration is an objective process compared to image enhancement: • Image restoration is to restore a degraded image back to the original image. • Image Enhancement is to manipulate the image so that it is suitable for a specific application. • Contrast stretching is an enhancement technique while debluring function is considered a restoration. • Only consider in this chapter a degraded digital image. • Restoration can be categorized as two groups: • Deterministic methods are applicable to images with little noise and a known degradation • Stochastic methods try to find the best restoration according to a particular stochastic criterion, e.g., a least square method ( J.Shanbehzadeh M.Gholizadeh )

  7. 5.1 A Model of the Image Degradation/Restoration Process ( J.Shanbehzadeh M.Gholizadeh )

  8. A Model of the Image Degradation/Restoration Process • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections ( J.Shanbehzadeh M.Gholizadeh )

  9. A Model of the Image Degradation/Restoration Process • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Spatial domain: additive noise • The degraded image in Spatial domain is • whereh(x,y)is a system thatcauses image distortion and h(x,y) is noise. • Frequency domain : blurring • The degraded image in Frequency domain is • Where the terms in capital letters are Fourier transforms. • Objective: obtain an estimate of ( J.Shanbehzadeh M.Gholizadeh )

  10. A Model of the Image Degradation/Restoration Process • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Three types of degradation that can be easily expressed mathematically • Relative motion of the camera and object • Wrong lens focus • Atmospheric turbulence ( J.Shanbehzadeh M.Gholizadeh )

  11. Spatial and Frequency Properties of Noise Noise Models • Some Important Noise Probability Density Functions • Periodic Noise Estimation of Noise Parameters • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections ( J.Shanbehzadeh M.Gholizadeh )

  12. The Principal Source of Noise • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Noise arise … • During Image Acquisition • Environment conditions • Quality of sensing elements • For x. Two factors for CCD: light level and sensor temperature • Image Transmission ( J.Shanbehzadeh M.Gholizadeh )

  13. Spatial and Frequency Properties of Noise • Spatial and Frequency Properties of Noise Noise Models • Some Important Noise Probability Density Functions • Periodic Noise Estimation of Noise Parameters • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections ( J.Shanbehzadeh M.Gholizadeh )

  14. Spatial and Frequency Properties of Noise • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • White noise: • The Fourier spectrum of noise is constant. • This terminology is a carryover from the physical properties of white light, which contains nearly all frequencies in the visible spectrum in equal properties. • We assume in this chapter: Noise is independent of spatial coordinates. ( J.Shanbehzadeh M.Gholizadeh )

  15. Spatial and Frequency Properties of Noise • Some Important Noise Probability Density Functions Noise Models • Some Important Noise Probability Density Functions • Periodic Noise Estimation of Noise Parameters • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections ( J.Shanbehzadeh M.Gholizadeh )

  16. Noise Probability Density Functions • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Noise cannot be predicted but can be approximately described in statistical way using the probability density function (PDF). • The statistical properties of the gray level of spatial noise can be considered random variables characterized by a PDF. ( J.Shanbehzadeh M.Gholizadeh )

  17. Most Common PDFs of Noises • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Gaussian noise • Are used frequently in practice • The PDF of a Gaussian random variable, Z, is given by: • Rayleigh noise • The PDF of Rayleigh noise: • Erlang (Gamma) noise • The PDF of Erlang noise : ( J.Shanbehzadeh M.Gholizadeh )

  18. Most Common PDFs of Noises • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Exponential noise • The PDF of exponential noise : • Uniform noise • The PDF of uniform noise is given by: • Impulse noise (Salt and pepper) • The PDF of impulse noise is given by: • If b>a gray level b will appear as a light dot; • If either Pa or Pbis zero, the impulse is called unipolar • If neither probability is zero (bipolar), and especially if they are approximately equal: salt and pepper noise ( J.Shanbehzadeh M.Gholizadeh )

  19. Most Common PDFs of Noises • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections PDF tells how much each z value occurs. ( J.Shanbehzadeh M.Gholizadeh )

  20. Noise Factors • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections • Gaussian noise: electronic circuit noise and sensors noise due to poor illumination and /or temperature • Rayleigh noise: helpful in characterizing noise phenomena in rang imaging • Exponential and gamma noise: application in laser imaging • Impulse noise: found in quick transient such as faulty-switching ; is the only one that is visually indicative • Uniform noise: basis for random number generator • Difficult to differentiate visually between the five image (Fig 5.4(a) ~Fig5.4(b)) ( J.Shanbehzadeh M.Gholizadeh )

  21. Image Degradation with Additive Noise • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections Original image Degraded images Histogram ( J.Shanbehzadeh M.Gholizadeh )

  22. Image Degradation with Additive Noise Original image • 5.1- A Model of the Image Degradation/Restoration Process • 5.2- Noise Models • 5.3- Restoration in the Presence of Noise Only-Spatial Filtering • 5.4- Periodic Noise Reduction by Frequency Domain Filtering • 5.5 - Linear, Position-Invariant Degradations • 5.6- Estimating the degradation Function • 5.7- Inverse Filtering • 5.8- Minimum Mean Square Error (Wiener) Filtering • 5.9- Constrained Least Square Filtering • 5.10- Geometric Mean Filter • 5.11- Image Reconstruction from Projections Degraded images Histogram ( J.Shanbehzadeh M.Gholizadeh )

More Related