1 / 5

AC i-V relationship for R, L, and C

AC i-V relationship for R, L, and C. Source v S (t) = Asin w t. Resistive Load. V R and i R are in phase. Phasor representation: v S (t) =Asin w t = Acos( w t-90 ° )= A -90 °= V S (j w ). I S (j w ) =(A / R) -90 °.

tibor
Download Presentation

AC i-V relationship for R, L, and C

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AC i-V relationship for R, L, and C Source vS(t) =Asinwt Resistive Load VR and iR are in phase Phasor representation: vS(t) =Asinwt = Acos(wt-90°)= A -90°=VS(jw) IS(jw) =(A / R)-90° Impendence: complex number of resistance Z=VS(jw)/ IS(jw)=R Generalized Ohm’s law VS(jw) = Z IS(jw) Everything we learnt before applies for phasors with generalized ohm’s law

  2. Capacitor Load ICE VC(jw)= A -90° Notice the impedance of a capacitance decreases with increasing frequency

  3. Inductive Load ELI Phasor: VL(jw)=A -90° IL(jw)=(A/wL) -180° ZL=jwL Opposite to ZC, ZL increases with frequency

  4. AC circuit analysis • Effective impedance: example • Procedure to solve a problem • Identify the sinusoidal and note the excitation frequency. • Covert the source(s) to phasor form • Represent each circuit element by its impedance • Solve the resulting phasor circuit using previous learnt analysis tools • Convert the (phasor form) answer to its time domain equivalent. Ex. 4.16, p180

  5. Ex. 4.21 P188 R1=100 W, R2=75 W, C= 1mF, L=0.5 H, vS(t)=15cos(1500t) V. Determine i1(t) and i2(t). Step 1: vS(t)=15cos(1500t), w=1500 rad/s. Step 2: VS(jw)=15 0 Step 3: ZR1=R1, ZR2=R2, ZC=1/jwC, ZL=jwL Step 4: mesh equation

More Related