220 likes | 321 Views
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7. “A combined constraint on the Neutrinos”. Arxiv: 0911.5291. Shaun Thomas: UCL. Moriond 2010. Outline: Neutrinos have mass! Neutrino signatures in cosmology Probes of the Model Cosmic Microwave Background
E N D
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 “A combined constraint on the Neutrinos” Arxiv: 0911.5291 Shaun Thomas: UCL Moriond 2010
Outline: • Neutrinos have mass! • Neutrino signatures in cosmology • Probes of the Model • Cosmic Microwave Background • Galaxy Surveys • Supernovae and Baryon Oscillations • Work: Thomas, Abdalla & Lahav (2009): arXiv:0911.5291 (+ In prep. 2010) • For the Future…? Shaun Thomas: UCL Moriond 2010
Neutrino oscillations indicate they have mass! But not on the absolute scale of mass… For example… • Beta-decay kinematics KATRIN • Neutrinoless double beta-decay nemo • Cosmology! Thomas, Abdalla, Lahav (2009) http://www-ik.fzk.de/~katrin/index.html Not just interesting physics but, Age of precision Cosmology an integral part of the cosmological model… Shaun Thomas: UCL Moriond 2010
Signatures in the Model • Act as radiation or matter and affect the Universe’s expansion history • Suppress the growth of matter structure and cosmological perturbations Neutrinos have large thermal velocities and Free-stream out of over-densities/inhomogeneities thus suppressing the clustering of matter and galaxies Neutrino fraction is directly related to sum of masses (RHS) Which we might see in a power spectrum… Shaun Thomas: UCL Moriond 2010
Probes of Cosmology Cosmic Microwave Background (CMB) With the CMB the effect depends on whether neutrinos are relativistic or not: • Suppress potentials - change heights of peaks OR • Affect matter-radiation balance Model Data Constraint WMAP 5 year (CMB) : < 1.3 eV (95% CL) Suggestive of a CMB limit ~ 1.5 eV (E.g. Ichikawa 05) Komatsu et al. [arXiv:0803.0547] Thomas et al. [arXiv:0911.5291] Shaun Thomas: UCL Moriond 2010
Probes of Cosmology E.g. Supernova Legacy Survey Supernovae (SN) Standard candle allows one to measure the expansion history Tighter matter/hubble constraint aids neutrino determination E.g. Percival et al Baryon Acoustic Oscillations (BAOs) Primordial CMB photon-baryon oscillations are imprinted onto late-time matter power spectrum: BAO Standard ruler allows one to measure the expansion history Tighter matter/hubble constraint aids neutrino determination CMB + SN + BAO : < 0.69 eV (95% CL) Komatsu et al. [arXiv:0803.0547] Thomas et al. [arXiv:0911.5291] Shaun Thomas: UCL Moriond 2010
Probes of Cosmology + Galaxy Clustering! Sloan Digital Sky Survey (SDSS) • Suppress the growth of matter structure and cosmological perturbations Smaller Scales Shaun Thomas: UCL Moriond 2010
Probes of Cosmology + Galaxy Clustering! Sloan Digital Sky Survey (SDSS) Luminous Red Galaxies (LRGs) Largest galaxy survey 723,556 LRGs 7,746 square degrees Photometric Redshift 0.45 < z < 0.65 Volume: 3.3 (Gpc /h)^3 Four redshift bins Thomas, Abdalla & Lahav - in prep Padmanabhan et al. 2007 ANNz - Collister and Lahav 2004 2SLAQ - 13’000 spectroscopic training/evaluation set Shaun Thomas: UCL Moriond 2010
Probes of Cosmology + Galaxy Clustering! Sloan Digital Sky Survey (SDSS) MegaZ DR7 One of the largest galaxy surveys to date Thomas, Abdalla & Lahav - in prep Including the production of a new SDSS galaxy clustering angular power spectra We can use this with the BAO(!) - Improves combined neutrino constraint further! Shaun Thomas: UCL Moriond 2010
Probes of Cosmology + Galaxy Clustering! Sloan Digital Sky Survey (SDSS) 4 bins: 0.45 < z < 0.65 Luminous Red Galaxies (LRGS) Max multipole l=300 MegaZ DR7 CMB + SN + BAO + SDSS LRGs + HST: < 0.28 eV (95% CL) 12 Parameters: Thomas et al. [arXiv:0911.5291] Shaun Thomas: UCL Moriond 2010
Cosmology and Neutrinos Komatsu et al. [arXiv:0803.0547] < 1.3 eV (CMB) < 0.67 eV (CMB+SN+BAO) Tereno et al. [arXiv:0810.0555] < 0.54 eV (CMB+SN+BAO+WL) Ichiki, Takada & Takahashi [arXiv:0810.4921] < 0.54 eV (CMB+SN+BAO+WL) Seljak et al. [arXiv:0604335] < 0.17 eV (+ Lyman Alpha…) Systematics - e.g. winds? CMB + SN + BAO + SDSS LRGs +HST Thomas, Abdalla & Lahav [0911.5291] 0.28 eV Using all the aforementioned probes for complementary data constraint Recent BAO data and production of newest galaxy clustering angular power spectrum CMB+SDSS+SN+BAO+HST With luminous Red Galaxies (LRGs) sampling a large cosmic volume Cosmology is starting to predict that experiments such as KATRIN (mentioned earlier) will not detect anything Shaun Thomas: UCL Moriond 2010
WOOHOO! Shaun Thomas: UCL Moriond 2010
‘Systematics and Limitations’ Work for the Future… Cosmology = Good Although we want tighter neutrino constraints We also want trustworthy neutrino constraints. However Galaxy Bias Non-linearities Parameter Degeneracies Model underlying matter power spectrum but measure the galaxy power spectrum Scale dependence…mimic…? Bias result or lose data Most quoted results assume cosmological constant cosmology Perturbation theory/ N-body simulations Degeneracy with w increases error bar E.g. Saito et al 09 Brandbyge & Hannestad 09 L_max = 300 => 0.28 eV L_max = 200 => 0.34 eV Work In Progress… E.g. Hannestad Shaun Thomas: UCL Moriond 2010
Summary • Cosmology is a sensitive neutrino experiment! (Funded billions of years ago!) • Massive neutrinos suppress the growth of structure • Probes such as galaxy clustering or weak lensing are sensitive to growth • Integral part of cosmological model and parameter space • Have a complete complementary constraint on neutrinos (sub eV region) • Systematics and limitations still exist though… • The Future is promising but with work to be done… Having produced data for a tighter constraint Tighter neutrino constraint. Trustworthy neutrino constraint. Shaun Thomas: UCL Moriond 2010
Related and Further Reading • Cosmology and Neutrinos • Thomas, Abdalla & Lahav [arXiv:0911.5291] • Komatsu et al. [arXiv:0803.0547] • Tereno et al. [arXiv:0810.0555] • Elgaroy and Lahav [arXiv:0606007] • Seljak et al. [arXiv:0604335] • Brandbyge & Hannestad [arxiv:0812.3149] • Saito et al [arxiv:0907.2922] • Galaxy Clustering • Thomas, Abdalla & Lahav (In Prep. (v. soon)) • Neutrino Experiments • NEMO [arXiv:0810.5497] • KATRIN Thank You for Listening! :) Contact: sat@star.ucl.ac.uk Shaun Thomas: UCL Moriond 2010
Simulation - testing the code by reconstructing input cosmology Evaluated the previous DR4 release which was consistent with Blake et al. (MegaZ DR4) Shaun Thomas: UCL
1,2 1,4 1,3 2,3 Shaun Thomas: UCL
2,4 3,4 Shaun Thomas: UCL
Mixing matrix profile Little correlation between multipole bands introduced by partial sky after binning Shaun Thomas: UCL
Excess Power Shaun Thomas: UCL