1 / 17

MLG: FUNDAMENTACIÓN

MLG: FUNDAMENTACIÓN. MLG_3. Prof. José Juan Aliaga Prof. Jaime Rúa Prof. Miguel Laguna Prof. Javier Pérez Prof. Felipe Jiménez Prof. Santiago Poveda. INTRODUCCI Ó N. FASES. FASES Analizar el enunciado del problema

tillie
Download Presentation

MLG: FUNDAMENTACIÓN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MLG: FUNDAMENTACIÓN MLG_3 Prof. José Juan Aliaga Prof. Jaime Rúa Prof. Miguel Laguna Prof. Javier Pérez Prof. Felipe Jiménez Prof. Santiago Poveda

  2. INTRODUCCIÓN. FASES FASES • Analizar el enunciado del problema • Determinar la naturaleza del problema o las posibles herramientas a utilizar para tratar de averiguar la solución. • Resolución • Discusión • Comprobación

  3. ANÁLISIS DEL ENUNCIADO Se deben determinar: • N = número de parámetros o condiciones simples que definen el elemento o figura geométrica solución del problema • R = restricciones expresadas como número de condiciones simples • G = número de grados de libertad

  4. PARÁMETROS • Posición: cualidad relativa al emplazamiento y orientación • Magnitud: cualidad que determina el tamaño o medida • Forma: Cualidad que simplifica las referencias de posición y tamaño entre las partes de una figura

  5. GRADOS DE LIBERTAD • Grado de libertad: Número de coordenadas libres que permiten el movimiento de una figura geométrica. Cada una de estas coordenadas libres equivale a una condición simple o parámetro • El número de grados de libertad es el mínimo número de parámetros indeterminados.

  6. RESTRICCIONES • Son las condiciones de paso, perpendicularidad, tangencia, angularidad, paralelismo, etc., que deben cumplir los elementos o figuras geométricas. • El número de condiciones simples o parámetros que llevan implícita cada una de estas condiciones es igual al número de ecuaciones que fijan esa condición. • Las restricciones llevan consigo la supresión de grados de libertad. • El número de grados de libertad que suprime una determinada restricciones es igual al número de condiciones simples, parámetros o ecuaciones que definen esa restricción.

  7. FORMAS GEOMÉTRICAS

  8. FORMAS GEOMÉTRICAS

  9. TIPOS DE DATOS • Datos fundamentales: • No pueden sustituirse por otros ya que cambiaría necesariamente la solución del problema (centro de la circunferencia, focos, centro y vértice de las cónicas y cuádricas, vértices de los polígonos, etc). RDF=NDF • Datos no fundamentales o simples: • Se pueden cambiar por otro dato distinto, sin cambiar la solución del problema necesariamente (puntos de paso de una circunferencia, tangente a una forma geométrica, etc). RDNF<NDNF

  10. Número de parámetros o de condiciones simples de una figura Figura definida por una ecuación: • Se reduce la ecuación al número mínimo de parámetros, resultando que el número de condiciones simples o parámetros que determinan una figura geométrica es igual al número de términos de la ecuación menos 1 Figura geométrica definida por 2 ecuaciones • Se reduce las ecuaciones al número mínimo de parámetros y el número de éstos es el número de condiciones simples o parámetros que determinan la figura geométrica.

  11. EJEMPLOS • Cónica • Circunferencia en el plano • Circunferencia en el espacio • Cuádrica 5 datos 5-2=3 datos 3+3=6 datos Condición circunferencia + plano soporte 9 datos

  12. EJEMPLOS: Polígonos sin considerar la posición

  13. EJEMPLOS: Polígonos sin considerar la posición

  14. Número de parámetros o de condiciones simples de una figura La figura geométrica es compuesta • El número de parámetros necesario para definir una figura geométrica compuesta es igual al número de cotas mínimo necesario para definir esa figura. • Cada una de estas cotas se obtiene de forma que queden definidas las figuras que componen la figura compuesta, empezando por la de referencia y aplicando lo anterior a cada figura geométrica simple.

  15. RELACIÓN ENTRE N, R, G • Las restricciones conllevan la supresión de grados de libertad. El número de grados de libertad que suprime una determinada restricción es igual al número de condiciones simples o ecuaciones que definen esa restricción. • G = número de grados de libertad que le quedan a una figura geométrica sometida a un número de restricciones R y se verifica: G = N – R siendo N el número de parámetros o condiciones simples que se necesitan para definir la figura o elemento geométrico a trazar. • Si una figura tiene N grados de libertad, debe someterse a N restricciones para definirla completamente.

  16. DETERMINACIÓN DEL Nº DE PARÁMETROS POSICIÓN DE FIGURA PLANA RÍGIDA (PLANO) • Definido por 2 puntos (4 coordenadas) • Relaciones de distancias fijas entre puntos • Resultado: 4-1 = 3 grados de libertad POSICIÓN DE SÓLIDO RÍGIDO (ESPACIO) • Definido por 3 puntos (9 coordenadas) • Relaciones de distancias fijas entre cada dos puntos (3 posibilidades) • Resultado: 9-3 = 6 grados de libertad

  17. TIPO DE PROBLEMA

More Related