180 likes | 421 Views
ITPA – TG – CDBM H-mode threshold database IAEA - NF paper November 2004 - Lisbon. Yves Martin Centre de Recherches en Physique des Plasmas Association Euratom - Confédération Suisse Ecole Polytechnique Fédérale de Lausanne CH - 1015 Lausanne, S witzerland. Plan.
E N D
ITPA – TG – CDBMH-mode threshold databaseIAEA - NF paperNovember 2004 - Lisbon Yves Martin Centre de Recherches en Physique des Plasmas Association Euratom - Confédération Suisse Ecole Polytechnique Fédérale de Lausanne CH - 1015 Lausanne, Switzerland
Plan • Improvement between paper and poster • DB status • New data • General data selection • Data distribution • Old scalings • Influence of the chosen divertors - best divertors • Influence of the chosen phases - remove 'bad' phases • Fits with equalised data representations • Random sub-selection • Weights • New parameter set - effect of the aspect ratio • Threshold power at low density • Prediction for ITER • Improvement still possible between poster and NF paper
DB status • New data • Table of new contributed data • New selection • Phase, shape, IgradB, ... • Data distribution
DB status II • Data distribution
DB status III • Data distribution
Previous scaling • Jo Snipes - IAEA 2002
Scaling with full data set • 2002 Scaling: • Pth1 = 1.67 ne200.61 BT0.78 a0.89 R0.94 • RMSE = 25.1% • 2004 scaling • Pth3 = 3.46 ne200.48 BT0.65 a1.37 R0.26 • RMSE = 32.4%
Effect of divertor • Select best divertor for each tokamak (where defined)
Effect of Divertor II • Scaling with one divertor for JET (MkIIap): • Pth4 = 2.96 ne200.85 BT0.51 a1.07 R0.83 • RMSE = 22.9% • Scaling with three divertors for JET (Mk0, MkI, MkIIap): • Pth4b = 2.96 ne200.84 BT0.63 a0.89 R1.02 • RMSE = 25.5%
Effect of Phase • Remove 'bad' Phases (LDL, OHMH, ...) • Scaling: • Pth5 = 2.34 ne200.67 BT0.62 a1.02 R0.71 • RMSE = 21.5% • ... little improvement, but 'good' one for conventional tokamaks
Normalisation of device contributions • Random selection of data in 'over-represented' devices • Scaling: • Pth5b = 2.39 ne200.63 BT0.64 a1.07 R0.65 • RMSE = 21.2%
Normalisation of device contributions • Including weigths for data • Scaling: • Pth5c = 1.82 ne200.57 BT0.67 a0.87 R0.79
Effect of aspect ratio - Spherical tokamaks • Including Spherical Tokamaks • Require aspect ratio characterisation • 3 parameters to describe shape • a or R, kappa or S, R/a or Rmm=(R+a)/(R-a) • Scaling: • Usual parameter set • Pth6 = 3.73 ne200.55 BT0.60 a1.43 R0.18 • RMSE = 24.5% • New parameter set • Pth7 = 0.151 ne200.63 BT0.67 R1.22 S0.25 Rmm1.21 • RMSE = 22.9%
Low density • Select low density data from each device Device Density [1020m-3] ASDEX 0.27 AUG 0.35 CMOD 1.2 JET for instance: Compass 0.6 DIII-D 0.4 JET 0.2 JFT2M 0.3 JT60U 0.25 MAST 0.275 NSTX 0.25 PBXM 0.3 TCV 0.55
Low density II • Scaling: • Pth8 = 2.23 ne200.385 BT0.63 a1.18 R0.27 • RMSE = 26.1%
Prediction for ITER • Predictions with all developed scalings • Prediction - confidence interval: on average, individual • Some scaling less reliable (usual parameter set, with STs) • Some scaling reliable: • #5: usual parameter set, conventional tokamaks • #7: extended parameter set, with STs • Prediction at 2 densities: 0.6 and 1.0 1020m-3 • Scaling ne20 Predicted LH threshold power [MW] • #5 0.6 22 32 35 38 53 • #5 1.0 31 42 49 56 76 • #7 0.6 22 32 35 39 55 • #7 1.0 30 41 48 56 77
Conclusion • New data added • Enlarged data set • Scaling with selected divertors • Scaling with selected phases • Aspect ratio effect • Low density threshold power • Prediction for ITER
New - to be incorporated • Scaling with other divertors • 'bad' divertors • all combinations • Dimensionally correct scalings • Discuss density value for ITER • include access to appropriate ELMy regime • Compare / discuss 'new' vs 'old' scalings • F.Ryter, J.Snipes, T.Takizuka