1 / 4

7.6.1: Use the number e to write and graph exponential functions

LEARNING GOALS – LESSON 7.6. 7.6.1: Use the number e to write and graph exponential functions representing real-world situations (compound interest & ½ life.) 7.6.2: Solve equations and problems involving e or natural logarithms. __________ Interest Formula:

Download Presentation

7.6.1: Use the number e to write and graph exponential functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LEARNING GOALS – LESSON 7.6 7.6.1: Use the number e to write and graph exponential functions representing real-world situations (compound interest & ½ life.) 7.6.2: Solve equations and problems involving e or natural logarithms. __________ Interest Formula: If the interest were to be compounded continuously (n=“∞”) we discover a horizontal ___________________ at ≈ 2.71828. This number is called _____. * e is just a __________ and it is _______________ A logarithm with a base of e is called a _____________ logarithm. Written: NOT: f(x) = ln x is the inverse of f(x) = ex. Example 2: Simplifying Expression with e or ln Simplify. A. ln e0.15t B. e3ln(x +1) C. ln e2x + ln ex

  2. Check It Out! Example 2 Simplify. D. ln e3.2 E. e2lnx F.ln ex +4y Continuously Compounded Interest: A = Pert A – P – r – t – Example 3: Economics Application • What is the total amount for an investment of $500 invested at 5.25% for 40 years and compounded continuously? • If the total amount for an investment of $500 invested for 50 years and compounded continuously was $10,000 what was the interest rate? A = Pert A = Pert

  3. Half-Life of a Substance: N(t) = N0e-kt N(t) – N0 – k – t – Example 4: Science Application A. Pluonium-239 (Pu-239) has a half-life of 24,110 years. How long does it take for a 1 g sample of Pu-239 to decay to 0.1 g? Step 1 Find the decay constant K for plutonium-239. N(t) = N0e–kt Use the natural decay function. Substitute 1 for N0 ,24,110 for t, and ½ for N(t) because half of the initial quantity will remain. Simplify and take ln of both sides. Step 2 Write the decay function and solve for t. It takes approximately _____________ years to decay.

  4. Example 4: Science Application B. Determine how long it will take for 650 mg of a sample of chromium-51 which has a half-life of about 28 days to decay to 200 mg. Step 1 Find the decay constant K for chromium-51. N(t) = N0e–kt Step 2 Write the decay function and solve for t. It takes approximately _____________ days to decay.

More Related