1 / 82

Computer and Robot Vision II

Computer and Robot Vision II. Chapter 19 Knowledge-Based Vision. Presented by: 傅楸善 & 王夏果 0937384214 指導教授 : 傅楸善 博士. 19.1 Introduction. knowledge-based vision system: uses domain knowledge to analyze images knowledge: might be very general about 3D objects or extremely specific

tinishaa
Download Presentation

Computer and Robot Vision II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer and Robot Vision II Chapter 19 Knowledge-Based Vision Presented by: 傅楸善 & 王夏果 0937384214 指導教授: 傅楸善 博士

  2. 19.1 Introduction • knowledge-based vision system: uses domain knowledge to analyze images • knowledge: might be very general about 3D objects or extremely specific • urban scene knowledge: appearance of houses, roads, office buildings • airport scene knowledge: runways, terminals, hangars DC & CV Lab. CSIE NTU

  3. 19.2 Knowledge Representations • knowledge representation structures: • feature vectors • relational structures • hierarchical structures • rules • frames DC & CV Lab. CSIE NTU

  4. 19.2.1 Feature Vectors • feature vector: simplest form of knowledge representation in computer vision • feature vector: tuple of measurements of features with numeric values • feature vectors: attribute-value tables: property lists • feature-vector representation: uses global features of object DC & CV Lab. CSIE NTU

  5. 19.2.1 Feature Vectors (cont.) • some useful features in character recognition: • number of straight strokes • number of loops • width-to-height ratio of character • two hand-printed characters and their feature vectors DC & CV Lab. CSIE NTU

  6. 19.2.1 Feature Vectors (cont.) DC & CV Lab. CSIE NTU

  7. 19.2.2 Relational Structures • complex objects and scenes: often composed of recognizable parts full description of complex entity consists of: • 1. global features • 2. global features of each of its parts • 3. relationships among parts DC & CV Lab. CSIE NTU

  8. 19.2.2 Relational Structures (cont.) • global attributes to represent line drawing extracted from gray tone image: • total number of line segments • density of line segments (average number of segments per unit area) • size (number of rows and number of columns) DC & CV Lab. CSIE NTU

  9. 19.2.2 Relational Structures (cont.) • for each line segment: • start coordinates: Row_Start, Col Start • endpoint coordinates: Row_End, Col End • length: Length • angle: Angle DC & CV Lab. CSIE NTU

  10. 19.2.2 Relational Structures (cont.) • three relationships to define perceptual groupings of line segments: • proximity • parallelism • collinearity • relational description of a simple line drawing DC & CV Lab. CSIE NTU

  11. DC & CV Lab. CSIE NTU

  12. 19.2.3 Hierarchical Structures • hierarchical structure represents better: entity broken into parts recursively • hierarchical structures have: both hierarchical and relational component • HD: Hierarchical Description • LEFT, ABOVE: relational description • atomic parts: can be broken down no further • hierarchical, relational description of an outdoor scene DC & CV Lab. CSIE NTU

  13. 19.2.3 Hierarchical Structures DC & CV Lab. CSIE NTU

  14. 19.2.4 Rules • Rule-based systems encode knowledge in form of rules DC & CV Lab. CSIE NTU

  15. 19.2.4 Rules (cont.) DC & CV Lab. CSIE NTU

  16. 19.2.4 Rules (cont.) DC & CV Lab. CSIE NTU

  17. 19.2.5 Frames and Schemas • frame data-structure for representing stereotyped situation relational structure whose terminal nodes consist of: • slots attributes • fillers values for those attributes DC & CV Lab. CSIE NTU

  18. 19.2.5 Frames and Schemas (cont.) • schema in database terminology: model or prototype • frame describing generalized cylinder model of electric motor: DC & CV Lab. CSIE NTU

  19. 19.3 Control Strategies • control strategy of system: dictates how knowledge will be used • KS: Knowledge Source • four kinds of control used in machine vision systems DC & CV Lab. CSIE NTU

  20. 19.3 Control Strategies (cont.) DC & CV Lab. CSIE NTU

  21. 19.3.1 Hierarchical Control • hierarchical control most common control structure in computer programming bottom-up control scenario: • preprocessing routines to convert original image to extract primitives • feature extraction: locates features of interest • decision-making: procedure performs some recognition task • hybrid control with feedback: neither bottom-up nor top-down control DC & CV Lab. CSIE NTU

  22. 19.3.2 Heterarchical Control • heterarchical control: lets data themselves dictate order of operations • knowledge sources: knowledge embodied in set of procedures • blackboard approach: tries to add some order to heterarchy • blackboard: global database shared by set of independent knowledge sources • blackboard scheduler: controls access to blackboard by knowledge sources • blackboard scheduler: decides execution order of competing knowledge sources DC & CV Lab. CSIE NTU

  23. Joke DC & CV Lab. CSIE NTU

  24. 19.4Information Integration • hypothesis: proposition or statement either true or false • hypothesize-and-test paradigm: commonly used within control structures • hypothesis: generated on the basis of some initial evidence number indicating certainty that hypothesis is true DC & CV Lab. CSIE NTU

  25. 19.4Information Integration (cont.) • two main approaches to information integration problem: • Bayesian belief network • Dempster-Shafer theory of evidence DC & CV Lab. CSIE NTU

  26. 19.4.1 Bayesian Approach • Bayesian belief network: directed acyclic graph • Bayesian belief network: with nodes representing propositional variables • Bayesian belief network: with arcs representing causal relationships DC & CV Lab. CSIE NTU

  27. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  28. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  29. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  30. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  31. 19.4.1 Bayesian Approach (cont.) DC & CV Lab. CSIE NTU

  32. DC & CV Lab. CSIE NTU

  33. 19.4.2 Dempster-Shafer Theory • Bayesian model: allows positive belief in proposition but not disbelief • Dempster-Shafer theory: information integration allowing belief and disbelief DC & CV Lab. CSIE NTU

  34. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  35. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  36. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  37. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  38. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  39. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  40. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  41. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  42. DC & CV Lab. CSIE NTU

  43. 19.4.2 Dempster-Shafer Theory (cont.) DC & CV Lab. CSIE NTU

  44. DC & CV Lab. CSIE NTU

  45. 19.4.2 Dempster-Shafer Theory (cont.) • belief in proposition A DC & CV Lab. CSIE NTU

  46. DC & CV Lab. CSIE NTU

  47. 19.4.2 Dempster-Shafer Theory (cont.) • result of combined m-values DC & CV Lab. CSIE NTU

  48. DC & CV Lab. CSIE NTU

  49. 19.4.2 Dempster-Shafer Theory (cont.) • total areas renormalized to ignore useless areas (each item divided by .781) DC & CV Lab. CSIE NTU

  50. DC & CV Lab. CSIE NTU

More Related