200 likes | 274 Views
Topic 11 Periodic and Exponential Functions I. Recall A S T C. opp hyp. + +. sin θ = = = + cos θ = = = + tan θ = = = +. adj hyp. + +. θ. opp adj. + +. opp hyp. + +. sin θ = = = + cos θ = = = - tan θ = = = -.
E N D
Recall • A S T C
opp hyp + + sinθ= = = + cosθ= = = + tanθ= = = + adj hyp + + θ opp adj + +
opp hyp + + sinθ= = = + cosθ= = = - tanθ= = = - adj hyp - + θ opp adj + -
opp hyp - + sinθ= = = - cosθ= = = - tanθ= = = + adj hyp - + θ opp adj - -
opp hyp - + sinθ= = = - cosθ= = = + tanθ= = = - adj hyp + + θ opp adj - +
A S T C ll tations o entral SIN + ALL + TAN + COS +
A S T C ll aints each lasses SIN + ALL + TAN + COS +
A S T C ll heilas alk onstantly Yappity yappity… Blah blah blah !!!! SIN + ALL + TAN + COS +
Sine of any angle Cosine of any angle Tangent of any angle
Recall • A S T C • tan = sin / cos • sin (90-) = cos • cos (90-) = sin • sin2 + cos2 =1 • sin, cos and tan of 30o , 60o and 45o
30 60 sin 30o = ½ cos 30o = tan 30o = sin 60o = cos 60o = ½ tan 60o =
45 45 sin 45o = cos 45o = tan 45o = 1
Model: Prove(a) cosec2x = sec x cosec x cot x(b) 1/(cosec x + 1) + 1/(cosec x -1) = 2tan x sec x
Model: Prove(a) cosec2x = sec x cosec x cot x(b) 1/(cosec x + 1) + 1/(cosec x -1) = 2tan x sec x