1 / 16

Robust Optimization

Robust Optimization. Multi-dimensional Marquardt Parameters. Multi-dimensional Optimization. The approximating function. A linear fitting function would be. In this work the fitting function is essentially. Expand the first derivatives about the value c 0.

titus
Download Presentation

Robust Optimization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Robust Optimization Multi-dimensional Marquardt Parameters

  2. Multi-dimensional Optimization

  3. The approximating function • A linear fitting function would be In this work the fitting function is essentially

  4. Expand the first derivatives about the value c0.

  5. The result is a new estimate for the values of c

  6. The usual problem is the inversion of the matrix • If a constant cn is such that its effect is a linear multiple of cm - that is if fA has parts cn Pn and cmPm with Pn and Pm effectively the same for all xi - the matrix has no inverse owing to the fact that there are no unique values for cn and cm

  7. The Marquardt Parameter • The solution is to request small constants. In particular add  c∙c to 2

  8. This results in constant estimates that depend on 

  9. The general result for any single constant is

  10. Relative Smoothers

  11. Define p2 and Fr

  12. Fr versus log 

  13. Fr values • If on a minimization step the actual 2 equals p2, not brave enough • Fr(Fr)3 • If the actual 2 > the last 2 then • Fr(9+Fr)/10 • If the values are slowly changing from one side  Aitkin’s extrapolation.

  14. At the beginning • FR,CHI,CHB,CHL 0.999990000 118785.585 0.100000000E+67 0.500000000E+ • FR,CHI,CHB,CHL 0.999970000 118785.230 118782.022 118785.585 • FR,CHI,CHB,CHL 0.999946001 118784.590 118778.816 118785.230 • FR,CHI,CHB,CHL 0.999902805 118783.438 118773.045 118784.590 • FR,CHI,CHB,CHL 0.999825058 118781.362 118762.657 118783.438 • FR,CHI,CHB,CHL 0.999685131 118777.623 118743.962 118781.362 • FR,CHI,CHB,CHL 0.999433325 118770.875 118710.315 118777.623 • FR,CHI,CHB,CHL 0.998980275 118758.679 118649.761 118770.875 • FR,CHI,CHB,CHL 0.998165430 118736.558 118540.808 118758.679 • FR,CHI,CHB,CHL 0.996700804 118696.154 118344.823 118736.558 • FR,CHI,CHB,CHL 0.994071243 118621.239 117992.433 118696.154 • FR,CHI,CHB,CHL 0.989359873 118476.802 117359.094 118621.239 • FR,CHI,CHB,CHL 0.980949663 118128.813 116219.779 118476.802 • FR,CHI,CHB,CHL 0.966036016 116688.910 114116.688 118128.813 • ierr, iloop 1 0 • FR,CHI,CHB,CHL 0.993990303 116611.223 115987.645 116688.910 • FR,CHI,CHB,CHL 0.989215050 116441.523 115353.576 116611.223 • FR,CHI,CHB,CHL 0.980691773 115680.541 114193.243 116441.523

  15. Aitkin’s extrapolation • FR,CHI,CHB,CHL 0.996558072 115637.868 115282.377 115680.541 • FR,CHI,CHB,CHL 0.993815191 115550.779 114922.670 115637.868 • FR,CHI,CHB,CHL 0.988901771 115232.958 114268.370 115550.779 • FR,CHI,CHB,CHL 0.988901771 114790.155 113954.076 115232.958 • FR,CHI,CHB,CHL 0.988901771 114243.910 113516.188 114790.155 • FR,CHI,CHB,CHL 0.988901771 113659.796 112976.005 114243.910 • FR,CHI,CHB,CHL 0.988901771 113455.616 112398.373 113659.796 • FR,CHI,CHB,CHL 0.988901771 112988.531 112196.459 113455.616 • ierr, iloop 1 0 • AITKIN'S EXTRAPOLATION • FR,CHI,CHB,CHL 0.998890177 112951.863 112863.134 112988.531 • FR,CHI,CHB,CHL 0.998003427 112875.210 112726.346 112951.863 • FR,CHI,CHB,CHL 0.996409757 112716.318 112469.960 112875.210

  16. Non-Linear Irevs • FR,CHI,CHB,CHL 0.999968166 112081.893 112078.975 112082.543 • FR,CHI,CHB,CHL 0.999942699 112080.061 112075.471 112081.893 • FR,CHI,CHB,CHL 0.999896862 112075.828 112068.501 112080.061 • FR,CHI,CHB,CHL 0.999814361 115490.184 112055.022 112075.828 • IREV= 1 IEND= 151 • FR,CHI,CHB,CHL 0.999953590 112070.874 112070.627 112075.828 • FR,CHI,CHB,CHL 0.999860777 113183.400 112055.271 112070.874 • IREV= 1 IEND= 150 • FR,CHI,CHB,CHL 0.999965194 112067.371 112066.973 112070.874 • FR,CHI,CHB,CHL 0.999906028 112064.902 112056.840 112067.371 • ierr, iloop 1 0 • FR,CHI,CHB,CHL 0.999983086 112064.676 112063.007 112064.902 • FR,CHI,CHB,CHL 0.999969555 112063.861 112061.264 112064.676 • FR,CHI,CHB,CHL 0.999945199 112061.774 112057.720 112063.861 • FR,CHI,CHB,CHL 0.999901361 114265.708 112050.720 112061.774 • IREV= 1 IEND= 145 • FR,CHI,CHB,CHL 0.999975340 112059.109 112059.010 112061.774 • FR,CHI,CHB,CHL 0.999926023 113792.644 112050.819 112059.109 • IREV= 1 IEND= 144

More Related