510 likes | 526 Views
Detailed methodology for determining atom position from the Center of Mass in linear molecules using moments of inertia and coordinate calculations.
E N D
General Method of Structure Determination for Linear Molecules
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M)
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a m1 m2 r2
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a m1 m2 I = Moment of Inertia of the normal species about a the C of M
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a b d m1 m2 I = Moment of Inertia of the normal species about a the C of M I* = Moment of Inertia of the substituted species about b its C of M
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a b d m1 m2 → m2+∆m I = Moment of Inertia of the normal species about a the C of M I* = Moment of Inertia of the substituted species about b its C of M
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a b m1 m2 I = Moment of Inertia of the normal species about a the C of M I* = Moment of Inertia of the substituted species about b its C of M I’ = Moment of Inertia of the substituted species about a
a m1 m2 r1 r2
a is the axis of the normal molecule a m1 m2 r1 r2
a is the axis of the normal molecule b is the axis of the substituted molecule mass m2+ ∆m a b m1 m2 r1 r2
a is the axis of the normal molecule b is the axis of the substituted molecule mass m2+ ∆m a b m1 m2 → m2+∆m r1 r2
a is the axis of the normal molecule b is the axis of the substituted molecule mass m2+ ∆m a b d m1 m2 → m2+∆m r1 r2
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 For the substituted molecule the parallel axis theorem yields
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* + (M + ∆m)d2 = I +∆mr22
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* + (M + ∆m)d2 = I +∆mr22 • I* - I = ∆mr22 – (M + ∆m) d2
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* + (M + ∆m)d2 = I +∆mr22 • I* - I = ∆mr22 – (M + ∆m) d2 = ∆I
∆I = ∆mr22 – (M + ∆m) d2 m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 • m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 • m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md • m1d = – m2d + ∆mr2 – ∆md m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 • m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md • m1d = – m2d + ∆mr2 – ∆md • d(m1 + m2 + ∆m) = ∆mr2 m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 • m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md • m1d = – m2d + ∆mr2 – ∆md • d(m1 + m2 + ∆m) = ∆mr2 • d = [∆m/(M + ∆m)]r2 m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • m1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • m1r1 = m2r2 • m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md • m1d = – m2d + ∆mr2 – ∆md • d(m1 + m2 + ∆m) = ∆mr2 • d = [∆m/(M + ∆m)]r2 = ∆mr2/(M + ∆m) m2+∆m a b m1 m2 r1 r2 d
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m)
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2 • ∆I = ∆mr22 – ∆m2 r22/(M + ∆m)
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2 • ∆I = ∆mr22 – ∆m2 r22/(M + ∆m) • ∆I = r22 [∆m – ∆m2 /(M + ∆m)]
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2 • ∆I = ∆mr22 – ∆m2 r22/(M + ∆m) • ∆I = r22 [∆m – ∆m2 /(M + ∆m)] • ∆I = r22[∆m(M + ∆m) – ∆m2 ]/(M + ∆m)
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2 • ∆I = ∆mr22 – ∆m2 r22/(M + ∆m) • ∆I = r22 [∆m – ∆m2 /(M + ∆m)] • ∆I = r22[∆m(M + ∆m) – ∆m2 ]/(M + ∆m) • ∆I = r22[∆mM + ∆m2 – ∆m2 ]/(M + ∆m)]
∆I = ∆mr22 – (M + ∆m) d2 • d = ∆m r2 /(M + ∆m) • ∆I = ∆mr22 – (M + ∆m) ∆m2 r22/(M + ∆m)2 • ∆I = ∆mr22 – ∆m2 r22/(M + ∆m) • ∆I = r22 [∆m – ∆m2 /(M + ∆m)] • ∆I = r22[∆m(M + ∆m) – ∆m2 ]/(M + ∆m) • ∆I = r22[∆mM + ∆m2 – ∆m2 ]/(M + ∆m)] • ∆I = r22[∆mM]/(M + ∆m)]
∆I = r22[∆mM]/(M + ∆m)] ∆I = μr22
∆I = r22[∆mM]/(M + ∆m)] ∆I = μr22 where μ = M∆m/(M + ∆m)
∆I = r22[∆mM]/(M + ∆m)] ∆I = μr22 where μ = M∆m/(M + ∆m) The reduced mass on substitution
∆I = r22[∆mM]/(M + ∆m)] ∆I = μr22 where μ = M∆m/(M + ∆m) The reduced mass on substitution ~ Analogue of m1m2/(m1+m2)
∆I = r22[∆mM]/(M + ∆m)] ∆I = μr22 where μ = M∆m/(M + ∆m) The reduced mass on substitution ~ Analogue of m1m2/(m1+m2) or Mm/(M+m)
Problem Determine the bond lengths for the molecule H-C≡C-H
Problem Determine the bond lengths for the molecule H-C≡C-H H-C≡C-H B = 1.17692 cm-1
Problem Determine the bond lengths for the molecule H-C≡C-H H-C≡C-H B = 1.17692 cm-1 H-C≡C-D B = 0.99141 cm-1
∆I = ∆mr22 – (M + ∆m) d2 m1(r1 + d) = (m2 + ∆m)(r2 – d) m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md m1r1 = m2r2 m1r1+ m1d = m2r2 – m2d + ∆mr2 – ∆md m1d = – m2d + ∆mr2 – ∆md d(m1 + m2 + ∆m) = ∆mr2 d = [∆m/(M + ∆m)]r2 m2+∆m a b m1 m2 r1 r2 d
I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* + (M + ∆m)d2 = I +∆mr22 • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* - I = ∆mr22 – (M + ∆m) d2 I • m1r1 = m2r2 • M1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • d(m1 + m2 + ∆m) = ∆mr2 • d = {∆m/(M + ∆m)}r2 a b m1 m2 r1 r2 d
a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 For the substituted molecule the parallel axis theorem yields I’ = I* + (M + ∆m)d2 I’ = I +∆mr22 I* + (M + ∆m)d2 = I +∆mr22 I* - I = ∆mr22 – (M + ∆m) d2
I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* + (M + ∆m)d2 = I +∆mr22 • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* - I = ∆mr22 – (M + ∆m) d2 I • m1r1 = m2r2 • M1(r1 + d) = (m2 + ∆m)(r2 – d) • m1r1 + m1d = m2r2 – m2d + ∆mr2 – ∆md • d(m1 + m2 + ∆m) = ∆mr2 • d = {∆m/(M + ∆m)}r2 a b d m1 m2
General Method of Structure Determination for Linear Molecules We wish to determine r2 the position of a particular atom (mass m2) from the Center of Mass (C of M) a is the axis of the normal molecule b is the axis of the substituted molecule a b d m1 m2 r1 r2 • For the substituted molecule the parallel axis theorem yields • I’ = I* + (M + ∆m)d2 • I’ = I +∆mr22 • I* - I = ∆mr22 – (M + ∆m) d2